Alon-Tarsi number of planar graphs

A simple proof

Presentation by Łukasz Gniecki

The Alon-Tarsi number of planar graphs - a simple proof Yangyan Gu, Xuding Zhu

The Alon-Tarsi number

Let D be an orientation of G

$H \subset E(D)$ is eulerian if $d_{H}^{+}(v)=d_{H}^{-}(v)$
H can be either even or odd (considering $|H|$)

Even

Odd

The Alon-Tarsi number

$\mathcal{E}_{e}(D)=\{H \subset E(D): \mathrm{H}$ is eulerian and $|H|$ is even $\}$
$\mathcal{E}_{o}(D)=\{H \subset E(D): \mathrm{H}$ is eulerian and $|H|$ is odd $\}$
$\operatorname{diff}(D)=\left|\left|\mathcal{E}_{e}(D)\right|-\left|\mathcal{E}_{o}(D)\right|\right|$
D is an AT orientation if $\operatorname{diff}(D) \neq 0$

The Alon-Tarsi number

Let $f: V(G) \longrightarrow \mathbb{N}$
D is f-AT if it is AT, and $d_{D}^{+}(v) \leq f(v)-1$
G is f-AT if it has an f-AT orientation D
The Alon-Tarsi number $\mathrm{AT}(G)$ is the minimum k such that G is f-AT where f is the constant function $f \equiv k$

Helpful lemmas - product of diffs

Lemma 1

Let D be an orientation of G and $X \subset V(G)$
If all edges of D are oriented from X to $V(G) \backslash X$ then $\operatorname{diff}(D)=\operatorname{diff}(D[X]) \cdot \operatorname{diff}(D[V(G) \backslash X])$

$\left|\mathcal{E}_{e}(D)\right|=\left|\mathcal{E}_{e}(X)\right|\left|\mathcal{E}_{e}(V \backslash X)\right|+\left|\mathcal{E}_{o}(X)\right|\left|\mathcal{E}_{o}(V \backslash X)\right|$
$\left|\mathcal{E}_{o}(D)\right|=\left|\mathcal{E}_{e}(X)\right|\left|\mathcal{E}_{o}(V \backslash X)\right|+\left|\mathcal{E}_{o}(X)\right|\left|\mathcal{E}_{e}(V \backslash X)\right|$
$\operatorname{diff}(D)=\| \mathcal{E}_{e}(D)\left|-\left|\mathcal{E}_{o}(D)\right|\right|=$
$\mid\left(\left|\mathcal{E}_{e}(X)\right|-\left|\mathcal{E}_{o}(X)\right|\right) \mathbf{(| \mathcal { E } _ { e } (V \backslash X) | - | \mathcal { E } _ { o } (V \backslash X) |) | =}$ $\operatorname{diff}(X) \operatorname{diff}(V \backslash X)$

Helpful lemmas - edge removal

Let $f: V(G) \longrightarrow \mathbb{N}$.
Define $f_{[u,-1]}$ as a function such that

$$
\begin{aligned}
& f_{[u,-1]}(v)=f(v) \text { for } v \in V(G) \backslash\{u\} \\
& f_{[u,-1]}(u)=f(u)-1 .
\end{aligned}
$$

Lemma 2

If G is f-AT and $u v$ is an edge then $G-u v$ is $f_{[u,-1]}$-AT or $f_{[v,-1]}$-AT

The AT number of planar graphs

Let G be a 2-connected planar graph and $v_{1} v_{2}$ a boundary edge.
Define $f_{G, v_{1}, v_{2}}$
1 for v_{1}, v_{2}
3 for remaining boundary vertices
5 for inner vertices

Additionally let M be a matching which contains $v_{1} v_{2}$
Define $f_{G, v_{1}, v_{2}, M}$
1 for v_{1}, v_{2}
$3-d_{M}(v)$ for remaining boundary vertices
4 for inner vertices

The AT number of planar graphs

Main Theorem

Let G be a 2 -connected planar graph and $v_{1} v_{2}$ be a boundary edge.

1. $G-v_{1} v_{2}$ is $f_{G, v_{1}, v_{2}}$-AT
2. G has a matching M which contains $v_{1} v_{2}$ such that $G-M$ is $f_{G, v_{1}, v_{2}, M^{-}}$-AT

Simple consequences:
AT (planar) ≤ 5
$\mathrm{AT}($ planar - matching $) \leq 4$

The AT number of planar graphs

Induction on $|V(G)|$

Base

G is a triangle
Orient edges from v_{3} to other vertices
Take matching M as $\left\{v_{1} v_{2}\right\}$

In the base case $f_{G, v_{1}, v_{2}, M}=f_{G, v_{1}, v_{2}}=\left\{\left(v_{1}, 1\right),\left(v_{2}, 1\right),\left(v_{3}, 3\right)\right\}$
We see that $d^{+}(v) \leq f_{\left[G, v_{1}, v_{2}\right]}(v)-1$
Also diff = 1

The AT number of planar graphs

Case 1

G has a chord $x y$

Let G_{1} and G_{2} be separated by the chord, both containing $x y$ Apply inductive hypothesis on $G_{1}, v_{1} v_{2}$ and $G_{2}, x y$

The AT number of planar graphs

Case 1

G has a chord $x y$

Let D_{1} be orientation of $G_{1}-v_{1} v_{2}$, and D_{2} orientation of $G_{2}-x y$
Take $D=D_{1} \cup D_{2}$
We need to show that $\operatorname{diff}(D) \neq 0$ and that the out degrees in D are bounded by $f_{G, v_{1}, v_{2}}-1$

The AT number of planar graphs

Case 1

G has a chord $x y$

From induction $\operatorname{diff}\left(D_{1}\right), \operatorname{diff}\left(D_{2}\right) \neq 0$
In D_{2} all edges touching x, y point towards them
Applying Lemma 1 on $X, V \backslash X: \operatorname{diff}(D)=\operatorname{diff}\left(D_{1}\right) \operatorname{diff}\left(D_{2}\right) \neq 0$

The AT number of planar graphs

Case 1

G has a chord $x y$

From induction D_{1} aligns with $f_{G_{1}, v_{1}, v_{2}}$ and D_{2} aligns with $f_{G_{2}, x, y}$ Out degree of x, y is only influenced by D_{1}
Out degrees in D are bounded by $f_{G, v_{1}, v_{2}}-1$

$$
G-v_{1} v_{2} \text { is } f_{G, v_{1}, v_{2}} \text {-AT }
$$

The AT number of planar graphs

Case 1
G has a chord $x y$

Matching: from induction we get M_{1}, M_{2}

$$
\begin{gathered}
v_{1} v_{2} \in M_{1}, x y \in M_{2} \\
\text { We pick } M=M_{1} \cup\left(M_{2} \backslash\{x y\}\right) \\
G-M \text { is } f_{G, v_{1}, v_{2}, M^{-} \text {-AT }}
\end{gathered}
$$

The AT number of planar graphs

Case 2
G has no chord

Let $v_{1}, \ldots, v_{n}, n \geq 3$ be the boundary
Let u_{1}, \ldots, u_{k} be the neighbors of v_{n} other than v_{1}, v_{n-1}
We apply the induction hypothesis on $G^{\prime}=G-v_{n}$

The AT number of planar graphs

Case 2
G has no chord

and obtain an orientation D^{\prime} of $G^{\prime}-v_{1} v_{2}$ with diff $\neq 0$, aligning with $f_{G^{\prime}, v_{1}, v_{2}}$

The AT number of planar graphs

Case 2
G has no chord

We add additional vertices w_{1}, \ldots, w_{k} to obtain $G^{\prime \prime}$

The AT number of planar graphs

Case 2
G has no chord

We create $D^{\prime \prime}$ by orienting the remaining edges of $G^{\prime \prime}-v_{1} v_{2}$
Each eulerian subset of D^{\prime} remains eulerian in $D^{\prime \prime}$
There are also some new eulerian subsets...

The AT number of planar graphs

Case 2
G has no chord

Every new subset has to go through v_{n} and then v_{n-1}
Observation: we added the same number of even eulerian subsets
as odd eulerian subsets
Thus, $\operatorname{diff}\left(D^{\prime \prime}\right)=\operatorname{diff}\left(D^{\prime}\right) \neq 0$

The AT number of planar graphs

Case 2
G has no chord

The given $G^{\prime \prime}$ will be $f_{G^{\prime \prime}, v_{1}, v_{2}}$-AT

The AT number of planar graphs

Case 2

G has no chord

Remove each w_{i} along with edges $u_{i} w_{i}$ and $w_{i} v_{n}$ to obtain G when removing edges, use Lemma 2 which may alter the orientation but diff $\neq 0$ is preserved, and out degrees not increased Conclusion: G is $f_{G, v_{1}, v_{2}}$-AT

The AT number of planar graphs

Case 2

G has no chord

For the matching, the induction gives matching M^{\prime} of G^{\prime} such that

$$
G^{\prime}-M^{\prime} \text { is } f_{G^{\prime}, v_{1}, v_{2}, M^{\prime}} \text {-AT }
$$

satisfied by an orientation D^{\prime} of $G^{\prime}-M^{\prime}$

The AT number of planar graphs

Case 2
G has no chord

We do the same trick of adding vertices w_{i} along with edges $u_{i} w_{i}$ and $w_{i} v_{n}$ and orienting the remaining edges as on the picture

The AT number of planar graphs

Case 2
G has no chord

Removal of w_{i} preserves diff but additionally lowers the function on each u_{i} except it can happen at most once that v_{n} gets the decrease
We possibly need to help the unlucky u_{i} by including $u_{i} v_{n}$ in the matching

