Alon-Tarsi number of planar graphs A simple proof

Presentation by Łukasz Gniecki

The Alon-Tarsi number of planar graphs – a simple proof Yangyan Gu, Xuding Zhu

The Alon-Tarsi number

Let ${\cal D}$ be an orientation of ${\cal G}$

 $H \subset E(D)$ is eulerian if $d_H^+(v) = d_H^-(v)$

H can be either even or odd (considering |H|)

The Alon-Tarsi number

 $\mathcal{E}_e(D) = \{ H \subset E(D) : \mathsf{H} \text{ is eulerian and } |H| \text{ is even } \}$ $\mathcal{E}_o(D) = \{ H \subset E(D) : \mathsf{H} \text{ is eulerian and } |H| \text{ is odd} \}$ $\mathsf{diff}(D) = ||\mathcal{E}_e(D)| - |\mathcal{E}_o(D)||$

D is an AT orientation if $\mathrm{diff}(D)\neq 0$

The Alon-Tarsi number

Let $f: V(G) \longrightarrow \mathbb{N}$

D is f-AT if it is AT, and $d_D^+(v) \le f(v) - 1$

G is $f\mbox{-}AT$ if it has an $f\mbox{-}AT$ orientation D

The Alon-Tarsi number AT(G) is the minimum k such that G is f-AT where f is the constant function $f \equiv k$

Helpful lemmas - product of diffs

Lemma 1

Let D be an orientation of G and $X \subset V(G)$ If all edges of D are oriented from X to $V(G) \setminus X$ then $diff(D) = diff(D[X]) \cdot diff(D[V(G) \setminus X])$

 $\begin{aligned} |\mathcal{E}_e(D)| &= |\mathcal{E}_e(X)| |\mathcal{E}_e(V \setminus X)| + |\mathcal{E}_o(X)| |\mathcal{E}_o(V \setminus X)| \\ |\mathcal{E}_o(D)| &= |\mathcal{E}_e(X)| |\mathcal{E}_o(V \setminus X)| + |\mathcal{E}_o(X)| |\mathcal{E}_e(V \setminus X)| \end{aligned}$

 $diff(D) = ||\mathcal{E}_e(D)| - |\mathcal{E}_o(D)|| = |(|\mathcal{E}_e(X)| - |\mathcal{E}_o(X)|) |(|\mathcal{E}_e(V \setminus X)| - |\mathcal{E}_o(V \setminus X)|)| = diff(X)diff(V \setminus X)$

Helpful lemmas - edge removal

Let
$$f: V(G) \longrightarrow \mathbb{N}$$
.
Define $f_{[u,-1]}$ as a function such that
 $f_{[u,-1]}(v) = f(v)$ for $v \in V(G) \setminus \{u\}$
 $f_{[u,-1]}(u) = f(u) - 1$.

Lemma 2

If G is f-AT and uv is an edge then G - uv is $f_{[u,-1]}$ -AT or $f_{[v,-1]}$ -AT

Let G be a 2-connected planar graph and v_1v_2 a boundary edge.

Define f_{G,v_1,v_2} 1 for v_1, v_2 3 for remaining boundary vertices 5 for inner vertices

Additionally let M be a matching which contains v_1v_2

Define $f_{G,v_1,v_2,M}$ 1 for v_1, v_2 $3 - d_M(v)$ for remaining boundary vertices 4 for inner vertices

Main Theorem

Let G be a 2-connected planar graph and v_1v_2 be a boundary edge.

- 1. $G v_1 v_2$ is f_{G,v_1,v_2} -AT
- 2. G has a matching M which contains v_1v_2 such that

G-M is $f_{G,v_1,v_2,M}$ -AT

Simple consequences:

 $\begin{array}{l} \mathsf{AT}(\mathsf{planar}) \leq 5 \\ \mathsf{AT}(\mathsf{planar} - \mathsf{matching}) \leq 4 \end{array}$

proof...

```
Induction on |V(G)|
```

Base

 ${\boldsymbol{G}}$ is a triangle

Orient edges from v_3 to other vertices

Take matching M as $\{v_1v_2\}$

In the base case $f_{G,v_1,v_2,M} = f_{G,v_1,v_2} = \{(v_1,1), (v_2,1), (v_3,3)\}$ We see that $d^+(v) \leq f_{[G,v_1,v_2]}(v) - 1$ Also diff = 1

Step...

Case 1

 ${\cal G}$ has a chord xy

Let G_1 and G_2 be separated by the chord, both containing xyApply inductive hypothesis on G_1, v_1v_2 and G_2, xy

Case 1

G has a chord xy

Let D_1 be orientation of $G_1 - v_1v_2$, and D_2 orientation of $G_2 - xy$ Take $D = D_1 \cup D_2$ We need to show that diff $(D) \neq 0$ and that the out degrees in D are bounded by $f_{G,v_1,v_2} - 1$

Case 1

G has a chord xy

From induction diff (D_1) , diff $(D_2) \neq 0$ In D_2 all edges touching x, y point towards them Applying Lemma 1 on $X, V \setminus X$: diff $(D) = diff(D_1) diff(D_2) \neq 0$

Case 1

G has a chord xy

From induction D_1 aligns with f_{G_1,v_1,v_2} and D_2 aligns with $f_{G_2,x,y}$ Out degree of x, y is only influenced by D_1 Out degrees in D are bounded by $f_{G,v_1,v_2} - 1$ $G - v_1v_2$ is f_{G,v_1,v_2} -AT

Case 1

G has a chord xy

Matching: from induction we get M_1, M_2 $v_1v_2 \in M_1, xy \in M_2$ We pick $M = M_1 \cup (M_2 \setminus \{xy\})$ G - M is $f_{G,v_1,v_2,M}$ -AT

Case 2

 ${\boldsymbol{G}}$ has no chord

Let $v_1, ..., v_n$, $n \ge 3$ be the boundary Let $u_1, ..., u_k$ be the neighbors of v_n other than v_1, v_{n-1} We apply the induction hypothesis on $G' = G - v_n$

Case 2

 ${\cal G}$ has no chord

and obtain an orientation D' of $G' - v_1v_2$ with diff $\neq 0$, aligning with f_{G',v_1,v_2}

Case 2

 ${\boldsymbol{G}}$ has no chord

We add additional vertices $w_1, ..., w_k$ to obtain G''

Case 2

 ${\boldsymbol{G}}$ has no chord

We create D'' by orienting the remaining edges of $G'' - v_1v_2$ Each eulerian subset of D' remains eulerian in D''There are also some new eulerian subsets...

Case 2

 ${\boldsymbol{G}}$ has no chord

Every new subset has to go through v_n and then v_{n-1} Observation: we added the same number of even eulerian subsets as odd eulerian subsets Thus, $diff(D'') = diff(D') \neq 0$

Case 2

 ${\boldsymbol{G}}$ has no chord

The given G'' will be f_{G'',v_1,v_2} -AT

Case 2

 ${\boldsymbol{G}}$ has no chord

Remove each w_i along with edges $u_i w_i$ and $w_i v_n$ to obtain Gwhen removing edges, use **Lemma 2** which may alter the orientation but diff $\neq 0$ is preserved, and out degrees not increased **Conclusion**: G is f_{G,v_1,v_2} -AT

Case 2

 ${\boldsymbol{G}}$ has no chord

For the matching, the induction gives matching M' of G' such that G' - M' is $f_{G',v_1,v_2,M'}$ -AT satisfied by an orientation D' of G' - M'

Case 2

 ${\boldsymbol{G}}$ has no chord

We do the same trick of adding vertices w_i along with edges $u_i w_i$ and $w_i v_n$ and orienting the remaining edges as on the picture

Case 2

 ${\boldsymbol{G}}$ has no chord

Removal of w_i preserves diff but additionally lowers the function on each u_i **except** it can happen **at most** once that v_n gets the decrease We possibly need to help the unlucky u_i by including u_iv_n in the matching