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The Alon-Tarsi number

Let D be an orientation of G

H ⊂ E(D) is eulerian if d+H(v) = d−H(v)

G D

H can be either even or odd (considering |H|)

Even Odd



The Alon-Tarsi number

Ee(D) = {H ⊂ E(D) : H is eulerian and |H| is even }

Eo(D) = {H ⊂ E(D) : H is eulerian and |H| is odd}

diff(D) = ||Ee(D)| − |Eo(D)||

diff = 1

D is an AT orientation if diff(D) 6= 0



The Alon-Tarsi number

Let f : V (G) −→ N

D is f -AT if it is AT, and d+D(v) ≤ f(v)− 1

G is f -AT if it has an f -AT orientation D

AT ≤ 3

The Alon-Tarsi number AT(G) is the minimum k such that

G is f -AT where f is the constant function f ≡ k

2 2

23



Helpful lemmas - product of diffs

Let D be an orientation of G and X ⊂ V (G)

Lemma 1

If all edges of D are oriented from X to V (G) \X then

diff(D) = diff(D[X])· diff(D[V (G) \X])

X V (G) \X

diff(D) = ||Ee(D)| − |Eo(D)|| =

|Ee(D)| = |Ee(X)||Ee(V \X)|+ |Eo(X)||Eo(V \X)|
|Eo(D)| = |Ee(X)||Eo(V \X)|+ |Eo(X)||Ee(V \X)|

|(|Ee(X)| − |Eo(X)|) (|Ee(V \X)| − |Eo(V \X)|)| =
diff(X)diff(V \X)



Helpful lemmas - edge removal

Lemma 2

Let f : V (G) −→ N.

Define f[u,−1] as a function such that

f[u,−1](v) = f(v) for v ∈ V (G) \ {u}
f[u,−1](u) = f(u)− 1.

If G is f -AT and uv is an edge then G− uv is f[u,−1]-AT or f[v,−1]-AT

u v

f(u) f(v) u v

f(u)− 1 f(v)

u v

f(u) f(v)− 1
OR



The AT number of planar graphs

Let G be a 2-connected planar graph and v1v2 a boundary edge.

Define fG,v1,v2

1 for v1, v2
3 for remaining boundary vertices

5 for inner vertices

Additionally let M be a matching which contains v1v2

Define fG,v1,v2,M

1 for v1, v2
3− dM (v) for remaining boundary vertices

4 for inner vertices

v1

v2
1

1 3

3

33

5

v1

v2
1

1 2

3
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The AT number of planar graphs

Main Theorem

Let G be a 2-connected planar graph and v1v2 be a boundary edge.

1. G− v1v2 is fG,v1,v2-AT

2. G has a matching M which contains v1v2 such that

G−M is fG,v1,v2,M -AT

v1

v2
1

1 3

3

33

5
v1

v2
1

1 2

3

23
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Simple consequences:

AT(planar) ≤ 5

AT(planar - matching) ≤ 4 proof...



The AT number of planar graphs

Induction on |V (G)|
Base

G is a triangle

Orient edges from v3 to other vertices

Take matching M as {v1v2}

We see that d+(v) ≤ f[G,v1,v2](v)− 1

v1

v2

v3

In the base case fG,v1,v2,M = fG,v1,v2 = {(v1, 1), (v2, 1), (v3, 3)}

Also diff = 1

Step...



The AT number of planar graphs

Case 1

G has a chord xy

v1

v2

x

y

G1 G2

Let G1 and G2 be separated by the chord, both containing xy

Apply inductive hypothesis on G1, v1v2 and G2, xy



The AT number of planar graphs

Case 1

G has a chord xy

v1

v2

x

y

D1 D2

Let D1 be orientation of G1 − v1v2, and D2 orientation of G2 − xy

Take D = D1 ∪D2

We need to show that diff(D) 6= 0

and that the out degrees in D are bounded by fG,v1,v2 − 1



The AT number of planar graphs

Case 1

G has a chord xy

v1

v2

x

y

D1 D2

In D2 all edges touching x, y point towards them

From induction diff(D1), diff(D2) 6= 0

Applying Lemma 1 on X,V \X: diff(D) = diff(D1) diff(D2) 6= 0

X V \X



The AT number of planar graphs

Case 1

G has a chord xy

1

1

3

3

5 5

From induction D1 aligns with fG1,v1,v2 and D2 aligns with fG2,x,y

Out degree of x, y is only influenced by D1

Out degrees in D are bounded by fG,v1,v2 − 1

3

3

3

33

3

G− v1v2 is fG,v1,v2 -AT



The AT number of planar graphs

Case 1

G has a chord xy

1

1

3− dM

4 4

Matching: from induction we get M1,M2

v1v2 ∈M1, xy ∈M2

We pick M = M1 ∪ (M2 \ {xy})
G−M is fG,v1,v2,M -AT

3− dM
3− dM

3− dM
3− dM

3− dM
3− dM

3− dM



The AT number of planar graphs

Case 2

G has no chord

Let v1, ..., vn, n ≥ 3 be the boundary

We apply the induction hypothesis on G′ = G− vn

Let u1, ..., uk be the neighbors of vn other than v1, vn−1

v1 v2

vn−1

vn

u1

uk

G′

G



The AT number of planar graphs

Case 2

G has no chord

and obtain an orientation D′ of G′ − v1v2

v1, 1 v2, 1

vn−1, 3

vn

u1, 3

uk, 3

D′

G

with diff 6= 0, aligning with fG′,v1,v2



The AT number of planar graphs

Case 2

G has no chord

We add additional vertices w1, ..., wk to obtain G′′

vn D′

w1

wk

G′′

v1, 1 v2, 1

u1, 3

uk, 3

vn−1, 3



The AT number of planar graphs

Case 2

G has no chord

We create D′′ by orienting the remaining edges of G′′ − v1v2

vn, 3 D′′

w1

wk

G′′

Each eulerian subset of D′ remains eulerian in D′′

There are also some new eulerian subsets...

v1, 1 v2, 1

u1, 5

uk, 5

vn−1, 3



The AT number of planar graphs

Case 2

G has no chord

Every new subset has to go through vn and then vn−1

D′′

w1

wk

G′′

Observation: we added the same number of even eulerian subsets

as odd eulerian subsets

Thus, diff(D′′) = diff(D′) 6= 0

vn, 3

v1, 1 v2, 1

u1, 5

uk, 5

vn−1, 3



The AT number of planar graphs

Case 2

G has no chord

D′′

w1

wk

G′′

The given G′′ will be fG′′,v1,v2 -AT

vn, 3

v1, 1 v2, 1

u1, 5

uk, 5

vn−1, 3



The AT number of planar graphs

Case 2

G has no chord

D

G

Remove each wi along with edges uiwi and wivn to obtain G

when removing edges, use Lemma 2 which may alter the orientation

but diff 6= 0 is preserved, and out degrees not increased

Conclusion: G is fG,v1,v2-AT

vn, 3

v1, 1 v2, 1

u1, 5

uk, 5

vn−1, 3



The AT number of planar graphs

Case 2

G has no chord

For the matching, the induction gives matching M ′ of G′ such that

G′ −M ′ is fG′,v1,v2,M ′ -AT

v1, 1 v2, 1

vn−1, 3− dM

vn

u1, 3− dM

uk, 3− dM

D′

G

satisfied by an orientation D′ of G′ −M ′



The AT number of planar graphs

Case 2

G has no chord

vn−1, 3− dM

vn, 3

u1, 5

uk, 5

D′′

w1

wk

G′′

We do the same trick of adding vertices wi

along with edges uiwi and wivn
and orienting the remaining edges as on the picture

v1, 1 v2, 1



The AT number of planar graphs

Case 2

G has no chord

Removal of wi preserves diff

but additionally lowers the function on each ui

except it can happen at most once that vn gets the decrease

u1, 4

uk, 4

D

G

We possibly need to help the unlucky ui by including uivn in the matching

vn−1, 3− dM

vn, 3− dM

v1, 1 v2, 1


