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The Alon-Tarsi number

Let D be an orientation of G

G

H C E(D) is eulerian if d};(v) = dz(v)

H can be either even or odd (considering |H|)

Even
° ° ® > 9




The Alon-Tarsi number

E(D)={H C E(D) : His eulerian and |H| is even }
Eo(D)={H C E(D) : His eulerian and |H| is odd}
dlfF<D) — ng(D)’ — ‘go(D)H

D is an AT orientation if diff(D) # 0

diff <




The Alon-Tarsi number

Let f: V(G) — N
D is f-AT if it is AT, and df(v) < f(v) — 1
G is f-AT if it has an f-AT orientation D

The Alon-Tarsi number AT(G) is the minimum k such that
G is f-AT where f is the constant function f =k

AT <3




Helpful lemmas - product of diffs

Lemma 1

Let D be an orientation of G and X C V(G)

If all edges of D are oriented from X to V() \ X then
diff(D) = diff(D[X])- diff( D[V (G) \ X])

X > V(G)\ X
‘ge(D)’ — ‘ge(X)ng(V\X)‘ + ‘go(X)Hgo(V\X)‘
Eo(D)] = [E(X)|[Eo(V \ X)| + |Eo(X)]|E(V \ X))

dlfF(D) — ng(D)‘ — ’go(D)H —
(I€e(X)] = [Eo(X)]) (JE(V\X)| = [E(V \ X)])| =
diff(X)diff(V \ X)



Helpful lemmas - edge removal

Let f: V(G) — N.

Define ff, _1j as a function such that
flu,—11(v) = f(v) for v € V(G) \ {u}
Slu,—1)(w) = f(u) — 1.

Lemma 2
If G is f-AT and uv is an edge then G — uv is ff, _1]-AT or fi, _1)-AT

B
ARy




The AT number of planar graphs

Let G be a 2-connected planar graph and v;v5 a boundary edge.

Define fg v, v, 1
1 for U1, V2
3 for remaining boundary vertices 1 02
5 for inner vertices 3!
U1
3

Additionally let M be a matching which contains vy vs

Define fg vy vy, 1
1 for vy, v
3 — dps(v) for remaining boundary vertices 1 "2
4 for inner vertices 4

U1
3




The AT number of planar graphs

Main Theorem
Let G be a 2-connected planar graph and v;v5 be a boundary edge.
1. G —v1v2 1S fG o, vy-AT
2. G has a matching M which contains v;vy such that
G—Mis fG,v1,v2,M‘AT

1 3 1 2
[,
1 /2 3 1 /2 3
5 4
U1 U1
3 3 3 9

Simple consequences:
AT (planar) <5
AT (planar - matching) < 4 proof...




The AT number of planar graphs

Induction on |V (G)|
Base

G is a triangle

Orient edges from v3 to other vertices
Take matching M as {vivs} V9

U3

In the base case fg.v,.v0.M = fG v, .0, = {(V1,1), (v2,1),(vs3,3)}
We see that d¥(v) < fig v, 0. (V) — 1
Also diff =1

Step...



The AT number of planar graphs

Case 1
G has a chord zy

U2
" /‘\y//.\
Gl GQ

Let (G; and G5 be separated by the chord, both containing xy
Apply inductive hypothesis on G1,v1v2 and Gs, xy



The AT number of planar graphs

Case 1
G has a chord zy

U2
Ui/o\\‘y/‘/.\\‘
A
D+ A D- Y

Let D, be orientation of G; — v1v9, and Dy orientation of Gy — xy
Take D = D1 U Do
We need to show that diff(D) # 0
and that the out degrees in D are bounded by fg v, v, — 1



The AT number of planar graphs

Case 1
G has a chord zy

From induction diff(Dy), diff(Ds) # 0
In D5 all edges touching x, y point towards them
Applying Lemma 1 on X,V \ X: diff(D) = diff(D1) diff(Dy) # 0



The AT number of planar graphs

Case 1
G has a chord zy

From induction D; aligns with fg, ., v, and Ds aligns with fg, »
Out degree of x,y is only influenced by D,
Out degrees in D are bounded by fg 4,0, — 1
G —01v2 1S fG vy vy-AT



The AT number of planar graphs

Case 1
G has a chord zy

Matching: from induction we get M, M5
V12 € My, xy € Mo
We pick M = My U (M2 \ {zy})
G—Mis fG,vl,v2,M‘AT



The AT number of planar graphs

Case 2
(G has no chord

Uk

Un—1

Let vq,...,v,, n > 3 be the boundary
Let uq, ..., ur be the neighbors of v,, other than vy, v,,_1
We apply the induction hypothesis on G' = G — v,



The AT number of planar graphs

Case 2
(G has no chord
U1, 1 V2, 1
G Uy, 3
Un D/
Uk, 3
Un—1, 3 -

and obtain an orientation D’ of G’ — v{v9
with diff £ 0, aligning with fg/ 4, v,



The AT number of planar graphs

Case 2
(G has no chord

2)1,1 2)2,1

G// Uy, 3

D/

uk,S

A

z |
Un—1, 3

We add additional vertices w, ..., w; to obtain G"



The AT number of planar graphs

Case 2
(G has no chord o1 1 oo 1
G" U1, D
Uns O /4; D
‘\ Uk, O
-

Un—1, 3

We create D" by orienting the remaining edges of G"" — viv9
Each eulerian subset of D’ remains eulerian in D"
There are also some new eulerian subsets...



The AT number of planar graphs

Case 2
(G has no chord

2)1,1 2)2,1

Every new subset has to go through v,, and then v,,_1
Observation: we added the same number of even eulerian subsets

as odd eulerian subsets
Thus, diff(D"”) = diff(D") #£ 0



The AT number of planar graphs

Case 2
(G has no chord o1 1 oo 1
G" U1, D
Uns O /4; D
‘\ Uk, O
-

Un—1, 3

The given G will be fgr p, v,-AT



The AT number of planar graphs

Case 2
(G has no chord
U1, 1 V9, 1
G Uy, 5)
Uns O D
Uk, 5,
Un—1, S <

Remove each w; along with edges u;w; and w;v,, to obtain G
when removing edges, use Lemmma 2 which may alter the orientation
but diff #~ 0 is preserved, and out degrees not increased

Conclusion: G is fg 4, v,-AT



The AT number of planar graphs

Case 2
(G has no chord

Ulal 2)271

Un—1, S — d‘M

For the matching, the induction gives matching M’ of G’ such that
G/ — M’ is fG’,vl,vg,M"AT
satisfied by an orientation D’ of G’ — M’



The AT number of planar graphs

Case 2
(G has no chord

We do the same trick of adding vertices w;
along with edges u;w; and w;v,,
and orienting the remaining edges as on the picture



The AT number of planar graphs

Case 2
(G has no chord

Ulal 2)271

Unag_dM

Un—1, S — d‘M

Removal of w; preserves diff
but additionally lowers the function on each u;
except it can happen at most once that v,, gets the decrease
We possibly need to help the unlucky u; by including u;v,, in the matching



