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Infinite graphs

Definition

A graph is a pair G = (V,E),
where V is a set whose elements are called vertices,
and E is a set of paired vertices, whose elements are called edges.

Nobody said |V | ∈ N

Nobody even said deg(v) ∈ N

Well what about |V | ≥ |R|?
. . .

. . .

For now, we will focus on V = N

Are countable graphs majority 2−choosable?

|Differently colored neighbous| ≥ |Same colored neighbous|

Definition
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At most 1/2 At most 1/k

For each k ≥ 2, any countable digraph or countable
acyclic digraph is
(1/k)−majority (k + 1)−correspondence colorable.

Theorem (Haslegrave 2020) u v u v
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Thank you
for attention!


