Countable graphs are majority 3-choosable John Haslegrave

Optymalizacja Kombinatoryczna 2023/24Z

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Majority coloring

Is every finite graph majority 2-colorable?

Instead of coloring vertices with 1 and 2...

Instead of coloring vertices with 1 and 2...

For each vertex we are given a list of 2 colors.

Every finite graph is majority 2-choosable!

Definition

A graph is a pair G = (V, E),

where V is a set whose elements are called vertices,

and E is a set of paired vertices, whose elements are called edges.

Definition

A graph is a pair G = (V, E),

where V is a set whose elements are called vertices,

and E is a set of paired vertices, whose elements are called edges.

Definition

A graph is a pair G = (V, E), where V is a set whose elements are called vertices, and E is a set of paired vertices, whose elements are called edges.

```
Nobody said |V| \in \mathbb{N}
Nobody even said \deg(v) \in \mathbb{N}
```


Definition

A graph is a pair G = (V, E), where V is a set whose elements are called vertices, and E is a set of paired vertices, whose elements are called edges.

```
Nobody said |V| \in \mathbb{N}
Nobody even said \deg(v) \in \mathbb{N}
Well what about |V| \ge |R|?
```


Definition

A graph is a pair G = (V, E), where V is a set whose elements are called vertices, and E is a set of paired vertices, whose elements are called edges.

```
Nobody said |V| \in \mathbb{N}
Nobody even said \deg(v) \in \mathbb{N}
<del>Well what about |V| \ge |R|?</del>
```

For now, we will focus on $V = \mathbb{N}$

Definition

A graph is a pair G = (V, E), where V is a set whose elements are called vertices, and E is a set of paired vertices, whose elements are called edges.

Nobody said $|V| \in \mathbb{N}$ Nobody even said $\deg(v) \in \mathbb{N}$ Well what about $|V| \ge |R|$? For now, we will focus on $V = \mathbb{N}$

> Are countable graphs majority 2-choosable? |Differently colored neighbous| \geq |Same colored neighbous|

Fact

Every finite graph is majority 2-colorable.

Conjecture

Every countable graph is majority 2-colorable.

Fact

Every finite graph is majority 2-colorable.

Conjecture

Every countable graph is majority 2-colorable.

Theorem (Shelah, Milner 1990) Every graph is majority 3–colorable.

Fact

Every finite graph is majority 2-colorable.

Conjecture

Every countable graph is majority 2-colorable.

Theorem (Shelah, Milner 1990) Every graph is majority 3-colorable.

Fact

Conjecture

Every countable graph is majority 2-choosable.

Every finite graph is majority 2-choosable.

Fact

Every finite graph is majority 2-colorable.

Conjecture

Every countable graph is majority 2-colorable.

Theorem (Shelah, Milner 1990) Every graph is majority 3-colorable.

Fact

Conjecture

Every countable graph is majority 4-choosable.

Every finite graph is majority 2-choosable.

Every countable graph is majority 2-choosable. **Theorem** (Anholcer, Bosek, Grytczuk 2020)

Fact

Every finite graph is majority 2-colorable.

Conjecture

Every countable graph is majority 2-colorable.

Theorem (Shelah, Milner 1990) Every graph is majority 3-colorable.

Fact

Conjecture

Theorem (Haslegrave 2020)

Every finite graph is majority 2-choosable.

- Every countable graph is majority 2-choosable. **Theorem** (Anholcer, Bosek, Grytczuk 2020) Every countable graph is majority 4-choosable.
- Every countable graph is majority 3-choosable.

 \boldsymbol{V} - a countable set

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

 \boldsymbol{V} - a countable set

 $L:V\to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

V - a countable set

 $L:V\to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

Lemma

We can select L' such that:

- $\forall_{v \in V} L'(v) \subset L(v)$
- $\forall_{v \in V} |L'(v)| = l$
- For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

V - a countable set

 $L:V\to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

Lemma

We can select L' such that:

- $\forall_{v \in V} L'(v) \subset L(v)$
- $\forall_{v \in V} |L'(v)| = l$
- For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

V - a countable set

 $L:V\to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

Lemma

We can select L' such that:

- $\forall_{v \in V} L'(v) \subset L(v)$
- $\forall_{v \in V} |L'(v)| = l$
- For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

V - a countable set

 $L:V\to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

Lemma

We can select L' such that:

- $\forall_{v \in V} L'(v) \subset L(v)$
- $\forall_{v \in V} |L'(v)| = l$
- For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

V - a countable set

 $L:V\to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

Lemma

We can select L' such that:

- $\forall_{v \in V} L'(v) \subset L(v)$
- $\forall_{v \in V} |L'(v)| = l$
- For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

. . .

2	3	

V - a countable set

 $L:V\to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

Lemma

We can select L' such that:

- $\forall_{v \in V} L'(v) \subset L(v)$
- $\forall_{v \in V} |L'(v)| = l$
- For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

. . .

V - a countable set

 $L:V\to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

Lemma

We can select L' such that:

- $\forall_{v \in V} L'(v) \subset L(v)$
- $\forall_{v \in V} |L'(v)| = l$
- For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

. . .

2	3	

V - a countable set

 $L:V\to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

2	3	

V - a countable set

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 \mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L' such that:

- $\forall_{v \in V} L'(v) \subset L(v)$
- $\forall_{v \in V} |L'(v)| = l$
- For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

l = 2

. . .

2	3	

V - a countable set

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 \mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L' such that:

- $\forall_{v \in V} L'(v) \subset L(v)$
- $\forall_{v \in V} |L'(v)| = l$
- For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

l = 2

V - a countable set

 $L:V\to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size l+1

 ${\mathcal X}$ - a countable family of infinite subsets of V

Lemma

We can select L' such that:

- $\forall_{v \in V} L'(v) \subset L(v)$
- $\forall_{v \in V} |L'(v)| = l$
- For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

. . .

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

L' - a list assignment, each list has size 2, such that For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

Previously defined χ is a valid majority coloring.

• v of infinite degree has ∞ neighbours colored differently.

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

L' - a list assignment, each list has size 2, such that For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

Previously defined χ is a valid majority coloring.

- v of infinite degree has ∞ neighbours colored differently.
- v of finite degree:

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

L' - a list assignment, each list has size 2, such that For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

Previously defined χ is a valid majority coloring.

- v of infinite degree has ∞ neighbours colored differently.
- v of finite degree:

 $v_1 v_2 v_3$

G = (V, E) - a countable graph

 $L: V \to \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3

L' - a list assignment, each list has size 2, such that For every $X_i \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_i$ such that $c \notin L'(v)$

Previously defined χ is a valid majority coloring.

- v of infinite degree has ∞ neighbours colored differently.
- v of finite degree:

Theorem (Haslegrave 2020)

Every countable graph is majority 3-choosable.

Theorem (Shelah, Milner 1990)

Every graph (regardless of cardinality) is majority 3-colorable.

Theorem (Haslegrave 2020)

Every countable graph is majority 3-choosable.

Theorem (Shelah, Milner 1990)

Every graph (regardless of cardinality) is majority 3-colorable.

 $B_0 =$ vertices of finite degree

Theorem (Haslegrave 2020)

Every countable graph is majority 3-choosable.

Theorem (Shelah, Milner 1990)

Every graph (regardless of cardinality) is majority 3-colorable.

 $B_0 =$ vertices of finite degree

 B_i = vertices not in $\bigcup_{j < i} B_j$ but with infinitely many neighbours in that set

Theorem (Haslegrave 2020)

Every countable graph is majority 3-choosable.

Theorem (Shelah, Milner 1990)

Every graph (regardless of cardinality) is majority 3-colorable.

 $B_0 =$ vertices of finite degree

 B_i = vertices not in $\bigcup_{j < i} B_j$ but with infinitely many neighbours in that set

Theorem (Haslegrave 2020)

Every countable graph is majority 3-choosable.

Theorem (Shelah, Milner 1990)

Every graph (regardless of cardinality) is majority 3-colorable.

 $B_0 =$ vertices of finite degree

 B_i = vertices not in $\bigcup_{j < i} B_j$ but with infinitely many neighbours in that set

Theorem (Haslegrave 2020)

Every countable graph is majority 3-choosable.

Theorem (Shelah, Milner 1990)

Every graph (regardless of cardinality) is majority 3-colorable.

 $B_0 =$ vertices of finite degree

 B_i = vertices not in $\bigcup_{j < i} B_j$ but with infinitely many neighbours in that set

(Implies that) every graph with finitely many vertices of finite degree is majority 2-colorable.

 $B_0 =$ vertices of finite degree

 $B_i =$ vertices not in $\bigcup_{j < i} B_j$ but with infinitely many neighbours in that set

Theorem (Aharoni, Milner, Prikry 1990)

(Implies that) every graph with finitely many vertices of finite degree is majority 2-colorable.

 $B_0 =$ vertices of finite degree

 $B_i =$ vertices not in $\bigcup_{j < i} B_j$ but with infinitely many neighbours in that set

Theorem (Aharoni, Milner, Prikry 1990)

(Implies that) every graph with finitely many vertices of finite degree is majority 2-colorable.

 $B_0 =$ vertices of finite degree

 $B_i =$ vertices not in $\bigcup_{j < i} B_j$ but with infinitely many neighbours in that set

Theorem (Aharoni, Milner, Prikry 1990)

Theorem (Aharoni, Milner, Prikry 1990)

(Implies that) every graph with finitely many vertices of finite degree is majority 2-colorable.

 $B_0 =$ vertices of finite degree

 B_i = vertices not in $\bigcup_{j < i} B_j$ but with infinitely many neighbours in that set

Theorem (Aharoni, Milner, Prikry 1990)

(Implies that) every graph with finitely many vertices of finite degree is majority 2-colorable.

 $B_0 =$ vertices of finite degree

 B_i = vertices not in $\bigcup_{j < i} B_j$ but with infinitely many neighbours in that set

Every countable graph is majority 3-choosable: extensions

Theorem (Haslegrave 2020)

Every countable acyclic digraph is majority 3-choosable.

Every countable graph is majority 3-choosable: extensions

Theorem (Haslegrave 2020)

Every countable acyclic digraph is majority 3-choosable.

Theorem (Haslegrave 2020)

For each $k \ge 2$, any countable digraph or countable acyclic digraph is (1/k)-majority (k + 1)-choosable.

At most 1/2

At most 1/k

Every countable graph is majority 3-choosable: extensions

Theorem (Haslegrave 2020)

Every countable acyclic digraph is majority 3-choosable.

Theorem (Haslegrave 2020)

For each $k \geq 2$, any countable digraph or countable acyclic digraph is (1/k)-majority (k+1)-choosable.

Theorem (Haslegrave 2020)

For each $k \geq 2$, any countable digraph or countable acyclic digraph is (1/k)-majority (k+1)-correspondence <u>colorable</u>.

Open problems

Conjecture

Every countable graph is majority 2-colorable (2-choosable).

Conjecture

Every (countable) digraph is majority 3-colorable (3-choosable).

Conjecture

Every countable acyclic digraph is majority 2-colorable (2-choosable).

Open problems

Conjecture

Every countable graph is majority 2-colorable (2-choosable).

Conjecture

Every (countable) digraph is majority 3-colorable (3-choosable).

Conjecture

Every countable acyclic digraph is majority 2-colorable (2-choosable).

Thank you for attention!

