Countable graphs are majority 3-choosable

John Haslegrave

Optymalizacja Kombinatoryczna 2023/24Z

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. Is every finite graph majority 2 -colorable?

Majority choosability

Instead of coloring vertices with 1 and $2 \ldots$

Majority choosability

Instead of coloring vertices with 1 and 2 ...
For each vertex we are given a list of 2 colors.

Majority choosability

Instead of coloring vertices with 1 and $2 \ldots$
For each vertex we are given a list of 2 colors.

Majority choosability

Instead of coloring vertices with 1 and 2 ...
For each vertex we are given a list of 2 colors.

Majority choosability

Instead of coloring vertices with 1 and 2 ...
For each vertex we are given a list of 2 colors.

Majority choosability

Instead of coloring vertices with 1 and $2 \ldots$
For each vertex we are given a list of 2 colors.

Majority choosability

Instead of coloring vertices with 1 and $2 \ldots$
For each vertex we are given a list of 2 colors.

Majority choosability

Instead of coloring vertices with 1 and $2 \ldots$
For each vertex we are given a list of 2 colors.

Infinite graphs

Definition

A graph is a pair $G=(V, E)$, where V is a set whose elements are called vertices, and E is a set of paired vertices, whose elements are called edges.

Infinite graphs

Definition

A graph is a pair $G=(V, E)$, where V is a set whose elements are called vertices, and E is a set of paired vertices, whose elements are called edges.

Nobody said $|V| \in \mathbb{N}$

Infinite graphs

Definition

A graph is a pair $G=(V, E)$, where V is a set whose elements are called vertices, and E is a set of paired vertices, whose elements are called edges.

Nobody said $|V| \in \mathbb{N}$
Nobody even $\operatorname{said} \operatorname{deg}(v) \in \mathbb{N}$

Infinite graphs

Definition

A graph is a pair $G=(V, E)$, where V is a set whose elements are called vertices, and E is a set of paired vertices, whose elements are called edges.

Nobody said $|V| \in \mathbb{N}$
Nobody even $\operatorname{said} \operatorname{deg}(v) \in \mathbb{N}$
Well what about $|V| \geq|R|$?

Infinite graphs

Definition

A graph is a pair $G=(V, E)$, where V is a set whose elements are called vertices, and E is a set of paired vertices, whose elements are called edges.

Nobody said $|V| \in \mathbb{N}$
Nobody even $\operatorname{said} \operatorname{deg}(v) \in \mathbb{N}$
Well wat $|V| P \mid$?
For now, we will focus on $V=\mathbb{N}$

Infinite graphs

Definition

A graph is a pair $G=(V, E)$,
where V is a set whose elements are called vertices, and E is a set of paired vertices, whose elements are called edges.

Nobody said $|V| \in \mathbb{N}$
Nobody even $\operatorname{said} \operatorname{deg}(v) \in \mathbb{N}$
Well wat $|V| P \mid$?
For now, we will focus on $V=\mathbb{N}$

Are countable graphs majority 2 -choosable?
\mid Differently colored neighbous $\mid \geq$ Same colored neighbous \mid

State of the art
Fact
Every finite graph is majority 2 -colorable.

Conjecture

Every countable graph is majority 2 -colorable.

State of the art

Fact

Every finite graph is majority 2 -colorable.

Conjecture

Every countable graph is majority 2 -colorable.

Theorem (Shelah, Milner 1990)
Every graph is majority 3-colorable.

State of the art

Fact

Every finite graph is majority 2 -colorable.

Conjecture

Every countable graph is majority 2 -colorable.

Theorem (Shelah, Milner 1990)
Every graph is majority 3-colorable.

Fact

Every finite graph is majority 2 -choosable.

Conjecture

Every countable graph is majority 2 -choosable.

State of the art

Fact

Every finite graph is majority 2 -colorable.

Conjecture

Every countable graph is majority 2 -colorable.

Theorem (Shelah, Milner 1990)
Every graph is majority 3 -colorable.

Fact

Every finite graph is majority 2 -choosable.

Conjecture

Every countable graph is majority 2 -choosable.

Theorem (Anholcer, Bosek, Grytczuk 2020)
Every countable graph is majority 4 -choosable.

State of the art

Fact

Every finite graph is majority 2 -colorable.

Conjecture

Every countable graph is majority 2 -colorable.

Theorem (Shelah, Milner 1990)
Every graph is majority 3 -colorable.

Fact

Every finite graph is majority 2-choosable.

Conjecture

Every countable graph is majority 2-choosable.

Theorem (Anholcer, Bosek, Grytczuk 2020)
Every countable graph is majority 4-choosable.

Theorem (Haslegrave 2020)

Every countable graph is majority 3 -choosable.

Overkill lemma

V - a countable set
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size $l+1$
\mathcal{X} - a countable family of infinite subsets of V

Overkill lemma

V - a countable set
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size $l+1$
\mathcal{X} - a countable family of infinite subsets of V

$$
\begin{aligned}
& \text { Spoiler: } \\
& \begin{array}{l}
l=2 \\
\mathcal{X}=\{N(v): \operatorname{deg}(v)=\infty\}
\end{array}
\end{aligned}
$$

Overkill lemma

V - a countable set

$$
\begin{aligned}
& \text { Spoiler: } \\
& \begin{array}{l}
l=2 \\
\mathcal{X}=\{N(v): \operatorname{deg}(v)=\infty\}
\end{array}
\end{aligned}
$$

\mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Overkill lemma

V - a countable set

$$
\begin{aligned}
& \text { Spoiler: } \\
& \begin{array}{l}
l=2 \\
\mathcal{X}=\{N(v): \operatorname{deg}(v)=\infty\}
\end{array}
\end{aligned}
$$

\mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Overkill lemma

V - a countable set

$$
\begin{aligned}
& \text { Spoiler: } \\
& \begin{array}{l}
l=2 \\
\mathcal{X}=\{N(v): \operatorname{deg}(v)=\infty\}
\end{array}
\end{aligned}
$$

\mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Overkill lemma

V - a countable set
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size $l+1$
\mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

$$
\begin{aligned}
& \text { Spoiler: } \\
& \begin{array}{l}
l=2 \\
\mathcal{X}=\{N(v): \operatorname{deg}(v)=\infty\}
\end{array}
\end{aligned}
$$

Overkill lemma
V - a countable set
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size $l+1$ \mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

	1	2	3
X_{1}			
X_{2}			
X_{3}			

Overkill lemma
V - a countable set
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size $l+1$ \mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Overkill lemma
V - a countable set
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size $l+1$ \mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

	1	2	3
X_{1}			
X_{2}			
X_{3}			

Overkill lemma

V - a countable set
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size $l+1$
\mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Forb. Elem. of \mathcal{X}	1	2	3
X_{1}	\ddots		
X_{2}	\vdots		
X_{3}			

Take anything from X_{1}, remove 1 from its list.

$$
\begin{aligned}
& \text { Spoiler: } \\
& \begin{array}{l}
l=2 \\
\mathcal{X}=\{N(v): \operatorname{deg}(v)=\infty\}
\end{array}
\end{aligned}
$$

Overkill lemma
V - a countable set
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size $l+1$ \mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Overkill lemma
V - a countable set
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size $l+1$
\mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Overkill lemma
V - a countable set
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size $l+1$
\mathcal{X} - a countable family of infinite subsets of V

Lemma

We can select L^{\prime} such that:

- $\forall_{v \in V} L^{\prime}(v) \subset L(v)$
- $\forall_{v \in V}\left|L^{\prime}(v)\right|=l$
- For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Spoiler:
$l=2$
$\mathcal{X}=\{N(v): \operatorname{deg}(v)=\infty\}$

Every countable graph is majority 3-choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Every countable graph is majority 3-choosable
$G=(V, E)$ - a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Every countable graph is majority 3-choosable
$G=(V, E)$ - a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

χ_{1}

Every countable graph is majority 3-choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Every countable graph is majority 3-choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Every countable graph is majority 3 -choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Every countable graph is majority 3 -choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Every countable graph is majority 3 -choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

χ_{3}

χ_{5}
χ_{6}
χ_{7}

$\chi\left(v_{1}\right)=$
The color that appears ∞ times.

Every countable graph is majority 3 -choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

χ_{3}

χ_{5}
χ_{6}
χ_{7}

$$
\chi\left(v_{1}\right)=\bullet \quad \chi\left(v_{2}\right)=
$$

Every countable graph is majority 3 -choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Every countable graph is majority 3 -choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Every countable graph is majority 3 -choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Previously defined χ is a valid majority coloring.

- v of infinite degree has ∞ neighbours colored differently.

Every countable graph is majority 3 -choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Previously defined χ is a valid majority coloring.

- v of infinite degree has ∞ neighbours colored differently.
- v of finite degree:

$$
\chi\left(n_{1}\right) \quad \chi(v) \quad \chi\left(n_{2}\right) \quad \chi\left(n_{3}\right)
$$

Every countable graph is majority 3 -choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Previously defined χ is a valid majority coloring.

- v of infinite degree has ∞ neighbours colored differently.
- v of finite degree:

Every countable graph is majority 3 -choosable
$G=(V, E)-$ a countable graph
$L: V \rightarrow \mathcal{P}(\mathbb{N})$ - a list assignment, each list has size 3
L^{\prime} - a list assignment, each list has size 2 , such that
For every $X_{i} \in \mathcal{X}$ and every color c, there are infinitely many $v \in X_{i}$ such that $c \notin L^{\prime}(v)$

Previously defined χ is a valid majority coloring.

- v of infinite degree has ∞ neighbours colored differently.
- v of finite degree:

Every countable graph is majority 3-colorable
Theorem (Haslegrave 2020)
Every countable graph is majority 3 -choosable.
Theorem (Shelah, Milner 1990)
Every graph (regardless of cardinality) is majority 3-colorable.

Every countable graph is majority 3-colorable
Theorem (Haslegrave 2020)
Every countable graph is majority 3 -choosable.
Theorem (Shelah, Milner 1990)
Every graph (regardless of cardinality) is majority 3-colorable.

$B_{0}=$ vertices of finite degree

Every countable graph is majority 3-colorable
Theorem (Haslegrave 2020)
Every countable graph is majority 3 -choosable.

Theorem (Shelah, Milner 1990)

Every graph (regardless of cardinality) is majority 3-colorable.

$B_{0}=$ vertices of finite degree
$B_{i}=$ vertices not in $\bigcup_{j<i} B_{j}$ but with infinitely many neighbours in that set

Every countable graph is majority 3-colorable
Theorem (Haslegrave 2020)
Every countable graph is majority 3 -choosable.

Theorem (Shelah, Milner 1990)

Every graph (regardless of cardinality) is majority 3 -colorable.

$B_{0}=$ vertices of finite degree
$B_{i}=$ vertices not in $\bigcup_{j<i} B_{j}$ but with infinitely many neighbours in that set

Every countable graph is majority 3-colorable
Theorem (Haslegrave 2020)
Every countable graph is majority 3 -choosable.

Theorem (Shelah, Milner 1990)

Every graph (regardless of cardinality) is majority 3 -colorable.

$B_{0}=$ vertices of finite degree
$B_{i}=$ vertices not in $\bigcup_{j<i} B_{j}$ but with infinitely many neighbours in that set

Every countable graph is majority 3-colorable
Theorem (Haslegrave 2020)
Every countable graph is majority 3 -choosable.

Theorem (Shelah, Milner 1990)

Every graph (regardless of cardinality) is majority 3-colorable.

$B_{0}=$ vertices of finite degree
$B_{i}=$ vertices not in $\bigcup_{j<i} B_{j}$ but with infinitely many neighbours in that set
$C=V-\bigcup_{\beta<\gamma} B_{\beta}$

Every countable graph is majority 3-colorable
Theorem (Aharoni, Milner, Prikry 1990)
(Implies that) every graph with finitely many vertices of finite degree is majority 2 -colorable.

$B_{0}=$ vertices of finite degree
$B_{i}=$ vertices not in $\bigcup_{j<i} B_{j}$
$C=V-\bigcup_{\beta_{<\gamma}} B_{\beta}$ but with infinitely many neighbours in that set

Every countable graph is majority 3-colorable
Theorem (Aharoni, Milner, Prikry 1990)
(Implies that) every graph with finitely many vertices of finite degree is majority 2 -colorable.

$B_{0}=$ vertices of finite degree
$B_{i}=$ vertices not in $\bigcup_{j<i} B_{j}$
$C=V-\bigcup_{\beta_{<\gamma}} B_{\beta}$ but with infinitely many neighbours in that set

Every countable graph is majority 3-colorable
Theorem (Aharoni, Milner, Prikry 1990)
(Implies that) every graph with finitely many vertices of finite degree is majority 2 -colorable.

$B_{0}=$ vertices of finite degree
$B_{i}=$ vertices not in $\bigcup_{j<i} B_{j}$ but with infinitely many neighbours in that set
$C=V-\bigcup_{\beta_{<\gamma}} B_{\beta}$

Every countable graph is majority 3 -colorable
Theorem (Aharoni, Milner, Prikry 1990)

(Implies that) every graph with finitely many vertices of finite degree is majority 2 -colorable.

$B_{0}=$ vertices of finite degree
$B_{i}=$ vertices not in $\bigcup_{j<i} B_{j}$
$C=V-\bigcup_{\beta_{<\gamma}} B_{\beta}$ but with infinitely many neighbours in that set

Every countable graph is majority 3 -colorable
Theorem (Aharoni, Milner, Prikry 1990)

(Implies that) every graph with finitely many vertices of finite degree is majority 2 -colorable.

$B_{0}=$ vertices of finite degree
$B_{i}=$ vertices not in $\bigcup_{j<i} B_{j}$
$C=V-\bigcup_{\beta_{<\gamma}} B_{\beta}$ but with infinitely many neighbours in that set

Every countable graph is majority 3-choosable: extensions
Theorem (Haslegrave 2020)
Every countable acyclic digraph is majority 3 -choosable.

Every countable graph is majority 3-choosable: extensions
Theorem (Haslegrave 2020)
Every countable acyclic digraph is majority 3 -choosable.

Theorem (Haslegrave 2020)

For each $k \geq 2$, any countable digraph or countable acyclic digraph is $(1 / k)$-majority $(k+1)$-choosable.

At most $1 / 2$

At most $1 / k$

Every countable graph is majority 3 -choosable: extensions
Theorem (Haslegrave 2020)
Every countable acyclic digraph is majority 3 -choosable.

Theorem (Haslegrave 2020)

For each $k \geq 2$, any countable digraph or countable acyclic digraph is $(1 / k)$-majority $(k+1)$-choosable.

Theorem (Haslegrave 2020)

At most $1 / 2$
u

At most $1 / k$

For each $k \geq 2$, any countable digraph or countable acyclic digraph is
($1 / k$)-majority $(k+1)$-correspondence colorable.

Open problems

Conjecture

Every countable graph is majority 2 -colorable (2-choosable).

Conjecture

Every (countable) digraph is majority 3 -colorable (3-choosable).

Conjecture

Every countable acyclic digraph is majority 2 -colorable (2 -choosable).

Open problems

Conjecture

Every countable graph is majority 2 -colorable (2-choosable).

Conjecture

Every (countable) digraph is majority 3 -colorable (3-choosable).

Conjecture

Every countable acyclic digraph is majority 2 -colorable (2-choosable).

Thank you for attention!

