Countable graphs are majority 3-choosable

John Haslegrave

Optymalizacja Kombinatoryczna 2023 /247



Majority coloring

A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.




Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic. %

Is every finite graph majority 2—colorable?




Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Is every finite graph majority 2—colorable?

[/
? NN \

1
N



Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Is every finite graph majority 2—colorable?

[/
? N :

1
N



Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Is every finite graph majority 2—colorable?

?// NN

1
N



Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Is every finite graph majority 2—colorable?

?// T\

1
N,



Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Is every finite graph majority 2—colorable?

? L/ \ / ‘1"

1
N



Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Is every finite graph majority 2—colorable?

? L/ \ / ‘1"

1
N



Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Is every finite graph majority 2—colorable?

?/// N\ / \“A

1
N



Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Is every finite graph majority 2—colorable?

?/// N\ / \“A

1
N,



Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Is every finite graph majority 2—colorable?

1
N



Majority coloring
A coloring, in which at most half of the edges adjacent to each vertex are monochromatic.

Is every finite graph majority 2—colorable?

R
(Jc}o
? [ [ 7 N /] ‘,'A

~ \
&C\)
(Jc}o

Every finite graph is majority 2—colorable!

1
N




Majority choosability

Instead of coloring vertices with 1 and 2...

1 2

12

12

12



Majority choosability
Instead of coloring vertices with 1 and 2...

For each vertex we are given a list of 2 colors.

12

13

2 4

34



Majority choosability
Instead of coloring vertices with 1 and 2...

For each vertex we are given a list of 2 colors.

L 2

13

2 4

34



Majority choosability
Instead of coloring vertices with 1 and 2...

For each vertex we are given a list of 2 colors.

1

2

3 e

3 e

1

1

2

2

2

1

7



Majority choosability
Instead of coloring vertices with 1 and 2...

For each vertex we are given a list of 2 colors.

1

2

3

3 e

1

1

2

2

2

1

1

3

7



Majority choosability
Instead of coloring vertices with 1 and 2...

For each vertex we are given a list of 2 colors.

2

3 e

1

1

2

2

2

1

1

3

7



Majority choosability

Instead of coloring vertices with 1 and 2...
1

For each vertex we are given a list of 2 colors. °

13‘\

2 3¢

1

2

2

2

1

1 3



Majority choosability

Instead of coloring vertices with 1 and 2...
1

For each vertex we are given a list of 2 colors. °

13‘\

Every finite graph
is majority 2—choosable!

2 3¢

1

2

2

2

1

1 3



Infinite graphs
Definition

A graph is a pair G = (V, F),
where V' is a set whose elements are called vertices,
and E' is a set of paired vertices, whose elements are called edges.



Infinite graphs
Definition

A graph is a pair G = (V, F),
where V' is a set whose elements are called vertices,
and E' is a set of paired vertices, whose elements are called edges.

Nobody said |V| € N



Infinite graphs
Definition

A graph is a pair G = (V, F),
where V' is a set whose elements are called vertices,
and E' is a set of paired vertices, whose elements are called edges.

Nobody said |V| € N

Nobody even said deg(v) € N

Ry



Infinite graphs
Definition

A graph is a pair G = (V, F),
where V' is a set whose elements are called vertices,
and E' is a set of paired vertices, whose elements are called edges.

Nobody said |V| € N

Nobody even said deg(v) € N

~
Well what about |V | > |R|? .
‘ \ e o o
‘ \



Infinite graphs
Definition

A graph is a pair G = (V, F),
where V' is a set whose elements are called vertices,
and E' is a set of paired vertices, whose elements are called edges.

Nobody said |V| € N

Nobody even said deg(v) € N

For now, we will focuson V =N \ ® o o



Infinite graphs
Definition
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where V' is a set whose elements are called vertices,
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Nobody even said deg(v) € N

For now, we will focus on V =N

Are countable graphs majority 2—choosable?
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