Book embeddings of graphs

and why four pages are indeed necessary for planar graphs

Filip Jasionowicz

Thursday $25^{\text {th }}$ January, 2024

Book embedding of a graph

Definition (Book embedding)

- Vertices restricted to a line (spine of the book)
- Edges assigned to different half-planes delimited by the spine (pages of the book)
- No two edges on the same page cross

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.
(e)
(a)
(d)

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.
(e)

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.
(e)

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.
(e)

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.

Book thickness

Definition (Book thickness)

Book thickness $b t(G)$ of a graph G is a minimum number of pages required by any of its book embeddings.

Outer planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph.

Outer planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph.

Outer planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph.

Outer planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph

Hamiltonian planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph

Hamiltonian planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph

Hamiltonian planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph

Hamiltonian planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph

Hamiltonian planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph

Hamiltonian planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph

Hamiltonian planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph

Hamiltonian planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph

Hamiltonian planar

Theorem (Bernhart, Kainen, 1979)

For connected graph G:
(1) $b t(G)=0$ if and only if G is a path
(2) $b t(G) \leq 1$ if and only if G is outerplanar
(3) $b t(G) \leq 2$ if and only if G is a subgraph of a hamiltonian planar graph

K_{n}

Theorem (Bernhart, Kainen, 1979)
$b t\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$

K_{n}

Theorem (Bernhart, Kainen, 1979)
$b t\left(K_{n}\right) \geq\left\lceil\frac{n}{2}\right\rceil$

Theorem (Bernhart, Kainen, 1979)
$b t\left(K_{n}\right) \geq\left\lceil\frac{n}{2}\right\rceil$

Lemma

For graph G with n vertices and m edges $b t(G) \geq\left\lceil\frac{m-n}{n-3}\right\rceil$.

Theorem (Bernhart, Kainen, 1979)
$b t\left(K_{n}\right) \geq\left\lceil\frac{n}{2}\right\rceil$

Lemma

For graph G with n vertices and m edges $b t(G) \geq\left\lceil\frac{m-n}{n-3}\right\rceil$.

An outerplanar graph on n vertices has at most $2 n-3$ edges so for q-page embedding of graph G with n vertices and m edges:

$$
m \leq n+q(n-3)
$$

Theorem (Bernhart, Kainen, 1979)

$b t\left(K_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil$

K_{n}

Theorem (Bernhart, Kainen, 1979)
 $b t\left(K_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil$

K_{n}

Theorem (Bernhart, Kainen, 1979)
 $b t\left(K_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil$

K_{n}

Theorem (Bernhart, Kainen, 1979)
 $b t\left(K_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil$

K_{n}

Theorem (Bernhart, Kainen, 1979)

$$
b t\left(K_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil
$$

K_{n}

Theorem (Bernhart, Kainen, 1979)

$$
b t\left(K_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil
$$

K_{n}

Theorem (Bernhart, Kainen, 1979)

$$
b t\left(K_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil
$$

K_{n}

Theorem (Bernhart, Kainen, 1979)

$$
b t\left(K_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil
$$

K_{n}

Theorem (Bernhart, Kainen, 1979)

$$
b t\left(K_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil
$$

Planar graphs - upper bounds

Conjecture (Bernhart, Kainen, 1979)
For planar graph G : $b t(G)$ is unbounded.

Planar graphs - upper bounds

Conjecture (Bernhart, Kainen, 1979)

For planar graph $G: \operatorname{bt}(G)$ is unbounded. FALSE

Planar graphs - upper bounds

Conjecture (Bernhart, Kainen, 1979)

For planar graph G: bt (G) is unbounded. FALSE

Theorem (Buss, Shor, 1984)
For planar graph $G: b t(G) \leq 9$.

Planar graphs - upper bounds

Conjecture (Bernhart, Kainen, 1979)

For planar graph G: bt (G) is unbounded. FALSE

Theorem (Buss, Shor, 1984)
For planar graph G : $b t(G) \leq 9$.

Theorem (Heath, 1984)

For planar graph G : $b t(G) \leq 7$.

Planar graphs - upper bounds

Conjecture (Bernhart, Kainen, 1979)

For planar graph G: bt (G) is unbounded. FALSE

Theorem (Buss, Shor, 1984)
For planar graph G : $b t(G) \leq 9$.

Theorem (Heath, 1984)

For planar graph G : $b t(G) \leq 7$.

Theorem (Yannakakis, 1989)

For planar graph G : $b t(G) \leq 4$.

Planar graphs - lower bounds

Theorem (Goldner, Harary, 1975)
There exist a maximal non-hamiltonian planar graph G.

Planar graphs - lower bounds

Theorem (Goldner, Harary, 1975)

There exist a maximal non-hamiltonian planar graph G.

Corollary

There exist a planar graph G such that $G: b t(G) \geq 3$.

Planar graphs - lower bounds

Theorem (Goldner, Harary, 1975)

There exist a maximal non-hamiltonian planar graph G.

Corollary

There exist a planar graph G such that $G: b t(G) \geq 3$.

Main theorem

Theorem (Bekos et al., 2020)
There exist a planar graph G such that $G: \operatorname{bt}(G) \geq 4$.

Prerequisites

Lemma
 A 3-page book embedding of a graph does not contain:

Prerequisites

Lemma

A 3-page book embedding of a graph does not contain:
(1) A 4-twist:

Prerequisites

Lemma

A 3-page book embedding of a graph does not contain:
(1) A 4-twist:

(2) A pair of crossing edges that both cross two edges assigned to two different pages:

Prerequisites

Lemma

A 3-page book embedding of a graph does not contain:
(1) A 4-twist:

(2) A pair of crossing edges that both cross two edges assigned to two different pages:

(3) An edge that cross three edges assigned to three different pages:

Prerequisites

Definition

For set F of independent edges $\left(s_{i}, t_{i}\right)$ with $s_{i} \prec t_{i}$ we define rainbow, twist and necklace as follows:

Prerequisites

Lemma (Erdös, Szekeres, 1935)

Given $a, b \in \mathbb{N}$ every sequence of distinct real numbers of length at least $a b+1$ contains a monotonically increasing subsequence of length $a+1$ or a monotonically decreasing subsequence of length $b+1$.

Prerequisites

Lemma (Erdös, Szekeres, 1935)

Given $a, b \in \mathbb{N}$ every sequence of distinct real numbers of length at least $a b+1$ contains a monotonically increasing subsequence of length $a+1$ or a monotonically decreasing subsequence of length $b+1$.

Corollary

For every vertex ordering \prec of a graph with $m=r^{3}$ distinct edges one can identify r edges that form either r-rainbow or r-twist or r-necklace

Prerequisites

Lemma (Erdös, Szekeres, 1935)

Given $a, b \in \mathbb{N}$ every sequence of distinct real numbers of length at least $a b+1$ contains a monotonically increasing subsequence of length $a+1$ or a monotonically decreasing subsequence of length $b+1$.

Corollary

For every vertex ordering \prec of a graph with $m=r^{3}$ distinct edges one can identify r edges that form either r-rainbow or r-twist or r-necklace

$$
\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right), \ldots,\left(s_{m}, t_{m}\right)
$$

Take m edges (assume $s_{i}<t_{i}$) and sort them by the s_{i} coordinate and apply the previous lemma to t_{i} with $a:=r^{2}$ and $b:=r-1$

Gadget

Definition

For $k \geq 2$, define Q_{k} as:

Gadget

Definition

For $k \geq 2$, define Q_{k} as:

Gadget construction

Gadget properties

Fact

Graph Q_{k} with $k \geq 7$ does not admit an embedding in a book with three pages: Blue, Red, Green under following restrictions:
(1) A and B are consecutive in the ordering
(2) All edges $\left(A, t_{i}\right)$ are on the \mathcal{B} lue page
(3) All edges $\left(t_{i}, B\right)$ are on the $\mathcal{R e d}$ or \mathcal{G} reen page

Gadget properties

Fact

Graph Q_{k} with $k \geq 7$ does not admit an embedding in a book with three pages: Blue, Red, Green under following restrictions:
(1) A and B are consecutive in the ordering
(2) All edges $\left(A, t_{i}\right)$ are on the \mathcal{B} lue page
(3) All edges $\left(t_{i}, B\right)$ are on the $\mathcal{R e d}$ or \mathcal{G} reen page

Fact

Graph Q_{k} with $k \geq 10$ does not admit an embedding in a book with three pages: Blue, Red, Green under following restrictions:
(1) All vertices t_{i} are on the same side of edge (A, B)
(2) All edges $\left(A, t_{i}\right)$ are on the Blue page
(3) All edges $\left(t_{i}, B\right)$ are on the Red page

Some definitions

Definition
$Q:=Q_{10}$

Some definitions

Definition

$Q:=Q_{10}$

Definition

G_{N} is a graph consisting of a large $(N \gg 1)$ number of copies of graph Q that share vertices A and B.

Some definitions

Definition

$Q:=Q_{10}$

Definition

G_{N} is a graph consisting of a large $(N \gg 1)$ number of copies of graph Q that share vertices A and B.

Some definitions

Definition

$Q:=Q_{10}$

Definition

G_{N} is a graph consisting of a large $(N \gg 1)$ number of copies of graph Q that share vertices A and B.

Some definitions

Definition

$Q:=Q_{10}$

Definition

G_{N} is a graph consisting of a large $(N \gg 1)$ number of copies of graph Q that share vertices A and B.

Some definitions

Definition

$$
Q:=Q_{10}
$$

Definition

G_{N} is a graph consisting of a large ($N \gg 1$) number of copies of graph Q that share vertices A and B.

Some definitions

Definition

$Q:=Q_{10}$

Definition

G_{N} is a graph consisting of a large $(N \gg 1)$ number of copies of graph Q that share vertices A and B.

Some definitions

Definition

$Q:=Q_{10}$

Definition

G_{N} is a graph consisting of a large $(N \gg 1)$ number of copies of graph Q that share vertices A and B.

Some definitions

Definition

$Q:=Q_{10}$

Definition

G_{N} is a graph consisting of a large $(N \gg 1)$ number of copies of graph Q that share vertices A and B.

Properties of G_{N}

Fact

Number of different possible three page book embeddings of Q is finite and bounded by $Q_{n}!\cdot 3^{Q_{m}}$.

Properties of G_{N}

Fact

Number of different possible three page book embeddings of Q is finite and bounded by $Q_{n}!\cdot 3^{Q_{m}}$.

Fact

For $N \geq\left(\kappa^{\binom{Q_{n}}{2}}\right)^{3} \cdot Q_{n}!\cdot 3^{Q_{m}}$ one can identify κ copies of Q in G_{N} such that they are all 3-page embedded in the same way and for each pair of vertices of Q the corresponding pairs of vertices in this κ copies form a κ-rainbow or κ-twist κ-necklace

Proof idea

Definition (Final graph)

Define G as G_{N} with edges between vertices a_{i} and b_{i} in each Q replaced by copies of G_{N} (identify A in G_{N} with a_{i} and B in G_{N} with b_{i}).

Proof idea

Definition (Final graph)

Define G as G_{N} with edges between vertices a_{i} and b_{i} in each Q replaced by copies of G_{N} (identify A in G_{N} with a_{i} and B in G_{N} with b_{i}).

Proof idea

Definition (Final graph)

Define G as G_{N} with edges between vertices a_{i} and b_{i} in each Q replaced by copies of G_{N} (identify A in G_{N} with a_{i} and B in G_{N} with b_{i}).

Proof idea

Definition (Final graph)

Define G as G_{N} with edges between vertices a_{i} and b_{i} in each Q replaced by copies of G_{N} (identify A in G_{N} with a_{i} and B in G_{N} with b_{i}).

Proof idea

Figure 5: Illustrations for (a) FP2.1, (b) FP2.2, (c) FP2.3, and (d) FP2.4.

FP2.3 $\left[A \ldots a_{1} \ldots b_{1} \ldots x_{1} \ldots a_{2} \ldots b_{2} \ldots x_{2} \ldots a_{3} \ldots b_{3} \ldots x_{3} \ldots B \ldots y_{3} \ldots y_{2} \ldots y_{1}\right]$
Refer to Fig. 5c. Since edges $\left(A, x_{3}\right),\left(x_{1}, B\right)$ and $\left(a_{2}, y_{2}\right)$ form a 3-twist, we can assume that $\left(A, x_{i}\right) \in \operatorname{Red},\left(a_{i}, y_{i}\right) \in \mathcal{G}$ reen and $\left(x_{i}, B\right) \in \mathcal{B} l u e$, which implies that $\left(b_{i}, y_{i}\right) \in \mathcal{G r e e n},\left(a_{i}, B\right) \in \mathcal{B} l u e,\left(A, b_{i}\right) \in \mathcal{R e d}$ and $\left(a_{i}, x_{i}\right) \in \mathcal{B}$ lue. Consider now vertex $s_{2}^{B a x}$ of G_{N} that was introduced due to the stellation of face $\left\langle B, a_{2}, x_{2}\right\rangle$ in G_{N}. Due to edge $\left(a_{2}, s_{2}^{B a x}\right)$, vertex $s_{2}^{B a x}$ cannot be in $\left[x_{2} \ldots y_{2}\right]$. Analogously, vertex $s_{2}^{B a x}$ cannot be in $\left[y_{2} \ldots a_{2}\right]$, due to edge $\left(x_{2}, s_{2}^{B a x}\right)$. Finally, vertex $s_{2}^{B a x}$ cannot be in $\left[a_{2} \ldots x_{2}\right]$, due to edge $\left(B, s_{2}^{\text {Bax }}\right)$. Hence, there is no feasible placement of $s_{2}^{B a x}$ in \mathcal{E}; a contradiction.

FP2.4 $\left[A \ldots b_{1} \ldots a_{1} \ldots x_{1} \ldots b_{2} \ldots a_{2} \ldots x_{2} \ldots b_{3} \ldots a_{3} \ldots x_{3} \ldots B \ldots y_{3} \ldots y_{2} \ldots y_{1}\right]$
Refer to Fig. 5d. Since edges $\left(A, x_{3}\right),\left(x_{1}, B\right)$ and $\left(a_{2}, y_{2}\right)$ form a 3 -twist, we can assume that $\left(A, x_{i}\right) \in \operatorname{Red},\left(a_{i}, y_{i}\right) \in \mathcal{G}$ reen and $\left(x_{i}, B\right) \in \mathcal{B l u e}$. Hence, $\left(a_{i}, B\right),\left(x_{i}, B\right) \in \mathcal{B l u e}$, $\left(b_{i}, y_{i}\right) \in \mathcal{G}$ reen and $\left(A, b_{i}\right),\left(b_{i}, x_{i}\right) \in \mathcal{R e d}$. It is not hard to see that there is no feasible placement for vertex $s_{2}^{A b x}$ of G_{N} introduced due to the stellation of face $\left\langle A, b_{2}, x_{2}\right\rangle$ in \mathcal{E}.

Trick...

Trick

To perform the trick you need:

Trick...

Trick

To perform the trick you need:
(1) 28-core 2.4 GHz Intel Xeon E5-2680 machine with 256GB RAM

Trick...

Trick

To perform the trick you need:
(1) 28-core 2.4 GHz Intel Xeon E5-2680 machine with 256GB RAM
(2) reasonably good parallel SAT solver

Trick...

Trick

To perform the trick you need:
(1) 28-core 2.4 GHz Intel Xeon E5-2680 machine with 256GB RAM
(2) reasonably good parallel SAT solver
(3) SAT formulation of the problem

Trick...

Trick

To perform the trick you need:
(1) 28-core 2.4 GHz Intel Xeon E5-2680 machine with 256GB RAM
(2) reasonably good parallel SAT solver
(3) SAT formulation of the problem
(4) candidate graph

Trick...

Trick

To perform the trick you need:
(1) 28-core 2.4 GHz Intel Xeon E5-2680 machine with 256GB RAM
(2) reasonably good parallel SAT solver
(3) SAT formulation of the problem
(4) candidate graph
(5) approx. 48 hours

SAT formulation

Theorem (Bekos et al., 2015)

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O\left(n^{2}+m^{2}+p m\right)$ variables and $O\left(n^{3}+m^{2}\right)$ clauses.

SAT formulation

Theorem (Bekos et al., 2015)

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O\left(n^{2}+m^{2}+p m\right)$ variables and $O\left(n^{3}+m^{2}\right)$ clauses.

We will construct formula $\mathcal{F}(G, p)$ using three types of variables:

SAT formulation

Theorem (Bekos et al., 2015)

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O\left(n^{2}+m^{2}+p m\right)$ variables and $O\left(n^{3}+m^{2}\right)$ clauses.

We will construct formula $\mathcal{F}(G, p)$ using three types of variables:
(1) $\sigma\left(v_{i}, v_{j}\right)=$ true iff v_{i} is to the left of v_{j} along the spine

SAT formulation

Theorem (Bekos et al., 2015)

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O\left(n^{2}+m^{2}+p m\right)$ variables and $O\left(n^{3}+m^{2}\right)$ clauses.

We will construct formula $\mathcal{F}(G, p)$ using three types of variables:
(1) $\sigma\left(v_{i}, v_{j}\right)=$ true iff v_{i} is to the left of v_{j} along the spine
(2) $\phi_{q}\left(e_{i}\right)=$ true iff e_{i} is embedded on page q

SAT formulation

Theorem (Bekos et al., 2015)

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O\left(n^{2}+m^{2}+p m\right)$ variables and $O\left(n^{3}+m^{2}\right)$ clauses.

We will construct formula $\mathcal{F}(G, p)$ using three types of variables:
(1) $\sigma\left(v_{i}, v_{j}\right)=$ true iff v_{i} is to the left of v_{j} along the spine
(2) $\phi_{q}\left(e_{i}\right)=$ true iff e_{i} is embedded on page q
(3) $\chi\left(e_{i}, e_{j}\right)=$ true iff e_{i} and e_{j} are embedded on the same page

SAT formulation

Theorem (Bekos et al., 2015)

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O\left(n^{2}+m^{2}+p m\right)$ variables and $O\left(n^{3}+m^{2}\right)$ clauses.

We will construct formula $\mathcal{F}(G, p)$ using three types of variables:
(1) $\sigma\left(v_{i}, v_{j}\right)=$ true iff v_{i} is to the left of v_{j} along the spine
(2) $\phi_{q}\left(e_{i}\right)=$ true iff e_{i} is embedded on page q
(3) $\chi\left(e_{i}, e_{j}\right)=$ true iff e_{i} and e_{j} are embedded on the same page

And a few rules...

SAT formulation - rules

(1) asymmetry: $\sigma\left(v_{i}, v_{j}\right) \leftrightarrow \neg \sigma\left(v_{j}, v_{i}\right)$

SAT formulation - rules

(1) asymmetry: $\sigma\left(v_{i}, v_{j}\right) \leftrightarrow \neg \sigma\left(v_{j}, v_{i}\right)$
(2) transitivity: $\sigma\left(v_{i}, v_{j}\right) \wedge \sigma\left(v_{j}, v_{k}\right) \rightarrow \sigma\left(v_{i}, v_{k}\right)$

SAT formulation - rules

(1) asymmetry: $\sigma\left(v_{i}, v_{j}\right) \leftrightarrow \neg \sigma\left(v_{j}, v_{i}\right)$
(2) transitivity: $\sigma\left(v_{i}, v_{j}\right) \wedge \sigma\left(v_{j}, v_{k}\right) \rightarrow \sigma\left(v_{i}, v_{k}\right)$
(3) at least one page per edge: $\phi_{1}\left(e_{i}\right) \vee \phi_{2}\left(e_{i}\right) \vee \ldots \vee \phi_{p}\left(e_{i}\right)$

SAT formulation - rules

(1) asymmetry: $\sigma\left(v_{i}, v_{j}\right) \leftrightarrow \neg \sigma\left(v_{j}, v_{i}\right)$
(2) transitivity: $\sigma\left(v_{i}, v_{j}\right) \wedge \sigma\left(v_{j}, v_{k}\right) \rightarrow \sigma\left(v_{i}, v_{k}\right)$
(3) at least one page per edge: $\phi_{1}\left(e_{i}\right) \vee \phi_{2}\left(e_{i}\right) \vee \ldots \vee \phi_{p}\left(e_{i}\right)$
(4) both edges on the same page:

$$
\left(\left(\phi_{1}\left(e_{i}\right) \wedge \phi_{1}\left(e_{j}\right)\right) \vee \ldots \vee\left(\phi_{p}\left(e_{i}\right) \wedge \phi_{p}\left(e_{j}\right)\right)\right) \rightarrow \chi\left(e_{i}, e_{j}\right)
$$

SAT formulation - rules

(1) asymmetry: $\sigma\left(v_{i}, v_{j}\right) \leftrightarrow \neg \sigma\left(v_{j}, v_{i}\right)$
(2) transitivity: $\sigma\left(v_{i}, v_{j}\right) \wedge \sigma\left(v_{j}, v_{k}\right) \rightarrow \sigma\left(v_{i}, v_{k}\right)$
(3) at least one page per edge: $\phi_{1}\left(e_{i}\right) \vee \phi_{2}\left(e_{i}\right) \vee \ldots \vee \phi_{p}\left(e_{i}\right)$
(9) both edges on the same page:

$$
\left(\left(\phi_{1}\left(e_{i}\right) \wedge \phi_{1}\left(e_{j}\right)\right) \vee \ldots \vee\left(\phi_{p}\left(e_{i}\right) \wedge \phi_{p}\left(e_{j}\right)\right)\right) \rightarrow \chi\left(e_{i}, e_{j}\right)
$$

(6) no crossings on one page:

SAT formulation - rules

(1) asymmetry: $\sigma\left(v_{i}, v_{j}\right) \leftrightarrow \neg \sigma\left(v_{j}, v_{i}\right)$
(2) transitivity: $\sigma\left(v_{i}, v_{j}\right) \wedge \sigma\left(v_{j}, v_{k}\right) \rightarrow \sigma\left(v_{i}, v_{k}\right)$
(3) at least one page per edge: $\phi_{1}\left(e_{i}\right) \vee \phi_{2}\left(e_{i}\right) \vee \ldots \vee \phi_{p}\left(e_{i}\right)$
(9) both edges on the same page:

$$
\left(\left(\phi_{1}\left(e_{i}\right) \wedge \phi_{1}\left(e_{j}\right)\right) \vee \ldots \vee\left(\phi_{p}\left(e_{i}\right) \wedge \phi_{p}\left(e_{j}\right)\right)\right) \rightarrow \chi\left(e_{i}, e_{j}\right)
$$

(6) no crossings on one page:

$$
\begin{array}{ll}
\chi\left(\left(v_{i}, v_{j}\right),\left(v_{k}, v_{\ell}\right)\right) \rightarrow \\
& \neg\left(\sigma\left(v_{i}, v_{k}\right) \wedge \sigma\left(v_{k}, v_{j}\right) \wedge \sigma\left(v_{j}, v_{\ell}\right)\right) \\
& \wedge \neg\left(\sigma\left(v_{i}, v_{\ell}\right) \wedge \sigma\left(v_{\ell}, v_{j}\right) \wedge \sigma\left(v_{j}, v_{k}\right)\right) \\
\wedge \neg\left(\sigma\left(v_{j}, v_{k}\right) \wedge \sigma\left(v_{k}, v_{i}\right) \wedge \sigma\left(v_{i}, v_{\ell}\right)\right) & \wedge \neg\left(\sigma\left(v_{j}, v_{\ell}\right) \wedge \sigma\left(v_{\ell}, v_{i}\right) \wedge \sigma\left(v_{i}, v_{k}\right)\right) \\
\wedge \neg\left(\sigma\left(v_{k}, v_{i}\right) \wedge \sigma\left(v_{i}, v_{\ell}\right) \wedge \sigma\left(v_{\ell}, v_{j}\right)\right) & \wedge \neg\left(\sigma\left(v_{k}, v_{j}\right) \wedge \sigma\left(v_{j}, v_{\ell}\right) \wedge \sigma\left(v_{\ell}, v_{i}\right)\right) \\
\wedge \neg\left(\sigma\left(v_{\ell}, v_{i}\right) \wedge \sigma\left(v_{i}, v_{k}\right) \wedge \sigma\left(v_{k}, v_{j}\right)\right) & \wedge \neg\left(\sigma\left(v_{\ell}, v_{j}\right) \wedge \sigma\left(v_{j}, v_{k}\right) \wedge \sigma\left(v_{k}, v_{i}\right)\right)
\end{array}
$$

Candidate graph

Bibliography I

Bekos Michael A, Kaufmann Michael, Klute Fabian, Pupyrev Sergey, Raftopoulou Chrysanthi, Ueckerdt Torsten. Four pages are indeed necessary for planar graphs // arXiv preprint arXiv:2004.07630. 2020.
Bekos Michael A, Kaufmann Michael, Zielke Christian. The book embedding problem from a SAT-solving perspective // Graph Drawing and Network Visualization: 23rd International Symposium, GD 2015, Los Angeles, CA, USA, September 24-26, 2015, Revised Selected Papers 23. 2015. 125-138.

Bernhart Frank, Kainen Paul C. The book thickness of a graph // Journal of Combinatorial Theory, Series B. 1979. 27, 3. 320-331.

Buss Jonathan F., Shor Peter W. On the pagenumber of planar graphs // Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing. New York, NY, USA: Association for Computing Machinery, 1984. 98-100. (STOC '84).

Bibliography II

Erdös Paul, Szekeres George. A combinatorial problem in geometry // Compositio mathematica. 1935. 2. 463-470.
Goldner A, Harary Frank. Note on a smallest nonhamiltonian maximal planar graph // Bull. Malaysian Math. Soc. 1975. 6, 1. 41-42. Heath L. Embedding Planar Graphs In Seven Pages // 25th Annual Symposium onFoundations of Computer Science, 1984. 1984. 74-83.
Yannakakis Mihalis. Embedding planar graphs in four pages // Journal of Computer and System Sciences. 1989. 38, 1. 36-67.

