Book embeddings of graphs and why four pages are indeed necessary for planar graphs

Filip Jasionowicz

Thursday 25th January, 2024

Book embedding of a graph

Definition (Book embedding)

- Vertices restricted to a line (spine of the book)
- Edges assigned to different half-planes delimited by the *spine* (*pages* of the book)
- No two edges on the same *page* cross

Book thickness bt(G) of a graph G is a minimum number of pages required by any of its book embeddings.

< □ > < 凸

э

Theorem (Bernhart, Kainen, 1979)

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \le 1$ if and only if G is outerplanar
- bt(G) ≤ 2 if and only if G is a subgraph of a hamiltonian planar graph.

Theorem (Bernhart, Kainen, 1979)

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \le 1$ if and only if G is outerplanar
- bt(G) ≤ 2 if and only if G is a subgraph of a hamiltonian planar graph.

Theorem (Bernhart, Kainen, 1979)

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \le 1$ if and only if G is outerplanar
- bt(G) ≤ 2 if and only if G is a subgraph of a hamiltonian planar graph.

Theorem (Bernhart, Kainen, 1979)

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \le 1$ if and only if G is outerplanar
- Solution $bt(G) \le 2$ if and only if G is a subgraph of a hamiltonian planar graph

Theorem (Bernhart, Kainen, 1979)

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \leq 1$ if and only if G is outerplanar
- So $bt(G) \le 2$ if and only if G is a subgraph of a hamiltonian planar graph

Theorem (Bernhart, Kainen, 1979)

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \leq 1$ if and only if G is outerplanar
- So $bt(G) \le 2$ if and only if G is a subgraph of a hamiltonian planar graph

Theorem (Bernhart, Kainen, 1979)

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \le 1$ if and only if G is outerplanar
- So $bt(G) \le 2$ if and only if G is a subgraph of a hamiltonian planar graph

Theorem (Bernhart, Kainen, 1979)

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \leq 1$ if and only if G is outerplanar
- So $bt(G) \le 2$ if and only if G is a subgraph of a hamiltonian planar graph

Theorem (Bernhart, Kainen, 1979)

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \leq 1$ if and only if G is outerplanar
- So $bt(G) \le 2$ if and only if G is a subgraph of a hamiltonian planar graph

For connected graph G:

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \le 1$ if and only if G is outerplanar
- So $bt(G) \le 2$ if and only if G is a subgraph of a hamiltonian planar graph

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \le 1$ if and only if G is outerplanar
- So $bt(G) \le 2$ if and only if G is a subgraph of a hamiltonian planar graph

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \le 1$ if and only if G is outerplanar
- So $bt(G) \le 2$ if and only if G is a subgraph of a hamiltonian planar graph

Theorem (Bernhart, Kainen, 1979)

- bt(G) = 0 if and only if G is a path
- 2 $bt(G) \le 1$ if and only if G is outerplanar
- **3** $bt(G) \le 2$ if and only if G is a subgraph of a hamiltonian planar graph

 $bt(K_n) = \left\lceil \frac{n}{2} \right\rceil$

 $bt(K_n) \ge \left\lceil \frac{n}{2} \right\rceil$

æ

ヘロト ヘロト ヘヨト ヘヨト

Lemma

For graph G with n vertices and m edges $bt(G) \ge \left\lceil \frac{m-n}{n-3} \right\rceil$.

<ロ> <四> <四> <四> <四> <四</p>

Lemma

For graph G with n vertices and m edges
$$bt(G) \ge \left| \frac{m-n}{n-3} \right|$$
.

An outerplanar graph on *n* vertices has at most 2n - 3 edges so for *q*-page embedding of graph *G* with *n* vertices and *m* edges:

$$m \leq n + q(n-3)$$

э

< □ > < □ > < □ > < □ > < □ > < □ >

 $bt(K_n) \leq \left\lceil \frac{n}{2} \right\rceil$

 $bt(K_n) \leq \left\lceil \frac{n}{2} \right\rceil$

 $bt(K_n) \leq \left\lceil \frac{n}{2} \right\rceil$

Filip Jasionowicz

э

 $bt(K_n) \leq \left\lceil \frac{n}{2} \right\rceil$

 $bt(K_n) \leq \left\lceil \frac{n}{2} \right\rceil$

Filip Jasionowicz

 $bt(K_n) \leq \left\lceil \frac{n}{2} \right\rceil$

Theorem (Bernhart, Kainen, 1979)

 $bt(K_n) \leq \left\lceil \frac{n}{2} \right\rceil$

Theorem (Bernhart, Kainen, 1979)

 $bt(K_n) \leq \left\lceil \frac{n}{2} \right\rceil$

Theorem (Bernhart, Kainen, 1979)

 $bt(K_n) \leq \left\lceil \frac{n}{2} \right\rceil$

Filip Jasionowicz

Conjecture (Bernhart, Kainen, 1979)

For planar graph G: bt(G) is unbounded.

A B A A B A

Conjecture (Bernhart, Kainen, 1979)

For planar graph G: bt(G) is unbounded. FALSE

イロト 不得 ト イヨト イヨト

Conjecture (Bernhart, Kainen, 1979)

For planar graph G: bt(G) is unbounded. FALSE

Theorem (Buss, Shor, 1984)

For planar graph G: $bt(G) \leq 9$.

< □ > < 同 > < 回 > < 回 > < 回 >

Conjecture (Bernhart, Kainen, 1979)

For planar graph G: bt(G) is unbounded. FALSE

Theorem (Buss, Shor, 1984)

For planar graph G: $bt(G) \leq 9$.

Theorem (Heath, 1984)

For planar graph G: $bt(G) \leq 7$.

< □ > < □ > < □ > < □ > < □ > < □ >

Conjecture (Bernhart, Kainen, 1979)

For planar graph G: bt(G) is unbounded. FALSE

Theorem (Buss, Shor, 1984)

For planar graph G: $bt(G) \leq 9$.

Theorem (Heath, 1984)

For planar graph G: $bt(G) \leq 7$.

Theorem (Yannakakis, 1989)

For planar graph G: $bt(G) \leq 4$.

э

Theorem (Goldner, Harary, 1975)

There exist a maximal non-hamiltonian planar graph G.

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem (Goldner, Harary, 1975)

There exist a maximal non-hamiltonian planar graph G.

Corollary

There exist a planar graph G such that G: $bt(G) \ge 3$.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Goldner, Harary, 1975)

There exist a maximal non-hamiltonian planar graph G.

Corollary

There exist a planar graph G such that G: $bt(G) \ge 3$.

Theorem (Bekos et al., 2020)

There exist a planar graph G such that G: $bt(G) \ge 4$.

Filip Jasionowicz

Book embeddings of graphs

Thursday 25th January, 2024 13 / 29

э

A B A A B A

- ∢ 🗗 ▶

Lemma

A 3-page book embedding of a graph does not contain:

Prerequisites

Lemma

A 3-page book embedding of a graph does not contain:

A 4-twist:

Prerequisites

Lemma

A 3-page book embedding of a graph does not contain:

A 4-twist:

A pair of crossing edges that both cross two edges assigned to two different pages:

Prerequisites

Lemma

A 3-page book embedding of a graph does not contain:

A 4-twist:

A pair of crossing edges that both cross two edges assigned to two different pages:

In edge that cross three edges assigned to three different pages:

Definition

For set *F* of independent edges (s_i, t_i) with $s_i \prec t_i$ we define *rainbow*, *twist* and *necklace* as follows:

A B A A B A

Lemma (Erdös, Szekeres, 1935)

Given $a, b \in \mathbb{N}$ every sequence of distinct real numbers of length at least ab + 1 contains a monotonically increasing subsequence of length a + 1 or a monotonically decreasing subsequence of length b + 1.

Lemma (Erdös, Szekeres, 1935)

Given $a, b \in \mathbb{N}$ every sequence of distinct real numbers of length at least ab + 1 contains a monotonically increasing subsequence of length a + 1 or a monotonically decreasing subsequence of length b + 1.

Corollary

For every vertex ordering \prec of a graph with $m = r^3$ distinct edges one can identify r edges that form either r-rainbow or r-twist or r-necklace

Lemma (Erdös, Szekeres, 1935)

Given $a, b \in \mathbb{N}$ every sequence of distinct real numbers of length at least ab + 1 contains a monotonically increasing subsequence of length a + 1 or a monotonically decreasing subsequence of length b + 1.

Corollary

For every vertex ordering \prec of a graph with $m = r^3$ distinct edges one can identify r edges that form either r-rainbow or r-twist or r-necklace

$$(s_1, t_1), (s_2, t_2), (s_3, t_3), ..., (s_m, t_m)$$

Take *m* edges (assume $s_i < t_i$) and sort them by the s_i coordinate and apply the previous lemma to t_i with $a := r^2$ and b := r - 1

Definition

For $k \geq 2$, define Q_k as:

2

イロト イポト イヨト イヨト

Gadget

Definition

For $k \geq 2$, define Q_k as:

э

Filip Jasionowicz

∃ → Thursday 25th January, 2024

Image: A matrix

2

・ロト ・日下 ・ヨト

æ

・ロト ・日下 ・ヨト

2

2

Filip Jasionowicz

Thursday 25th January, 2024 18 / 29

2

Filip Jasionowicz

Thursday 25th January, 2024 18 / 29

2

Filip Jasionowicz

Thursday 25th January, 2024 18 / 29

2

2

<ロト <問ト < 目と < 目と

Fact

Graph Q_k with $k \ge 7$ does not admit an embedding in a book with three pages: Blue, Red, Green under following restrictions:

- A and B are consecutive in the ordering
- **2** All edges (A, t_i) are on the Blue page
- All edges (t_i, B) are on the \mathcal{R} ed or \mathcal{G} reen page

Fact

Graph Q_k with $k \ge 7$ does not admit an embedding in a book with three pages: Blue, Red, Green under following restrictions:

- A and B are consecutive in the ordering
- **2** All edges (A, t_i) are on the Blue page
- All edges (t_i, B) are on the $\mathcal{R}ed$ or $\mathcal{G}reen$ page

Fact

Graph Q_k with $k \ge 10$ does not admit an embedding in a book with three pages: Blue, Red, Green under following restrictions:

- All vertices t_i are on the same side of edge (A, B)
- 2 All edges (A, t_i) are on the Blue page
- Solution All edges (t_i, B) are on the $\mathcal{R}ed$ page

< ⊒ >

A D M A A A A M M
Some definitions

Definition

 $Q := Q_{10}$

2

イロト イボト イヨト イヨト

 $Q:=Q_{10}$

Definition

 G_N is a graph consisting of a large (N >> 1) number of copies of graph Q that share vertices A and B.

э

< □ > < 同 > < 回 > < 回 > < 回 >

 $Q := Q_{10}$

Definition

 G_N is a graph consisting of a large (N >> 1) number of copies of graph Q that share vertices A and B.

 $Q := Q_{10}$

Definition

 G_N is a graph consisting of a large (N >> 1) number of copies of graph Q that share vertices A and B.

 $Q := Q_{10}$

Definition

 G_N is a graph consisting of a large (N >> 1) number of copies of graph Q that share vertices A and B.

Some definitions

Definition

 $Q:=Q_{10}$

Definition

 G_N is a graph consisting of a large (N >> 1) number of copies of graph Q that share vertices A and B.

э

< □ > < □ > < □ > < □ > < □ > < □ >

 $Q := Q_{10}$

Definition

 G_N is a graph consisting of a large (N >> 1) number of copies of graph Q that share vertices A and B.

 $Q := Q_{10}$

Definition

 G_N is a graph consisting of a large (N >> 1) number of copies of graph Q that share vertices A and B.

 $Q:=Q_{10}$

Definition

 G_N is a graph consisting of a large (N >> 1) number of copies of graph Q that share vertices A and B.

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< □ > < 凸

Fact

Number of different possible three page book embeddings of Q is finite and bounded by $Q_n! \cdot 3^{Q_m}$.

Fact

Number of different possible three page book embeddings of Q is finite and bounded by $Q_n! \cdot 3^{Q_m}$.

Fact

For $N \ge \left(\kappa^{\binom{Q_n}{2}}\right)^3 \cdot Q_n! \cdot 3^{Q_m}$ one can identify κ copies of Q in G_N such that they are all 3-page embedded in the same way and for each pair of vertices of Q the corresponding pairs of vertices in this κ copies form a κ -rainbow or κ -twist κ -necklace

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition (Final graph)

Define G as G_N with edges between vertices a_i and b_i in each Q replaced by copies of G_N (identify A in G_N with a_i and B in G_N with b_i).

< 日 > < 同 > < 回 > < 回 > .

Definition (Final graph)

Define G as G_N with edges between vertices a_i and b_i in each Q replaced by copies of G_N (identify A in G_N with a_i and B in G_N with b_i).

Definition (Final graph)

Define G as G_N with edges between vertices a_i and b_i in each Q replaced by copies of G_N (identify A in G_N with a_i and B in G_N with b_i).

Filip Jasionowicz

Definition (Final graph)

Define G as G_N with edges between vertices a_i and b_i in each Q replaced by copies of G_N (identify A in G_N with a_i and B in G_N with b_i).

Figure 5: Illustrations for (a) FP2.1, (b) FP2.2, (c) FP2.3, and (d) FP2.4.

FP2.3 $[A ... a_1 ... b_1 ... x_1 ... a_2 ... b_2 ... x_2 ... a_3 ... b_3 ... x_3 ... B ... y_3 ... y_2 ... y_1]$

Refer to Fig. 5c. Since edges (A, x_3) , (x_1, B) and (a_2, y_2) form a 3-twist, we can assume that $(A, x_i) \in \mathcal{R}ed$, $(a_i, y_i) \in \mathcal{G}reen$ and $(x_i, B) \in \mathcal{B}lue$, which implies that $(b_i, y_i) \in \mathcal{G}reen$, $(a_i, B) \in \mathcal{B}lue$, $(A_b, b) \in \mathcal{R}ed$ and $(a_i, x_i) \in \mathcal{B}lue$. Consider now vertex s_2^{Bax} of G_N that was introduced due to the stellation of face (B, a_2, x_2) in G_N . Due to edge (a_2, s_2^{Bax}) , vertex s_2^{Bax} cannot be in $[x_2 \dots x_2]$. Analogously, vertex s_2^{Dax} cannot be in $[y_2 \dots a_2]$, due to edge (x_2, s_2^{Bax}) . Hence, there is no feasible placement of s_2^{Bax} in \mathcal{E} ; a contradiction.

FP2.4 $[A \dots b_1 \dots a_1 \dots x_1 \dots b_2 \dots a_2 \dots x_2 \dots b_3 \dots a_3 \dots x_3 \dots B \dots y_3 \dots y_2 \dots y_1]$

Refer to Fig. 5d. Since edges (A, x_3) , (x_1, B) and (a_2, y_2) form a 3-twist, we can assume that $(A, x_i) \in \mathcal{R}ed$, $(a_i, y_i) \in \mathcal{G}reen$ and $(x_i, B) \in \mathcal{B}lue$. Hence, $(a_i, B), (x_i, B) \in \mathcal{B}lue$, $(b_i, y_i) \in \mathcal{G}reen$ and $(A, b_i), (b_i, x_i) \in \mathcal{R}ed$. It is not hard to see that there is no feasible \mathcal{B} placement for vertex s_3^{bhc} of G_N introduced due to the stellation of face (A, b_2, x_2) in \mathcal{E} .

A D N A B N A B N A B N

To perform the trick you need:

Filip Jasionowicz

2

イロト イポト イヨト イヨト

To perform the trick you need:

28-core 2.4 GHz Intel Xeon E5-2680 machine with 256GB RAM

3

(日) (四) (日) (日) (日)

To perform the trick you need:

- 28-core 2.4 GHz Intel Xeon E5-2680 machine with 256GB RAM
- Preasonably good parallel SAT solver

To perform the trick you need:

- 28-core 2.4 GHz Intel Xeon E5-2680 machine with 256GB RAM
- easonably good parallel SAT solver
- **③** SAT formulation of the problem

To perform the trick you need:

- 28-core 2.4 GHz Intel Xeon E5-2680 machine with 256GB RAM
- easonably good parallel SAT solver
- **③** SAT formulation of the problem
- candidate graph

To perform the trick you need:

- 28-core 2.4 GHz Intel Xeon E5-2680 machine with 256GB RAM
- easonably good parallel SAT solver
- **③** SAT formulation of the problem
- Candidate graph
- **o** approx. 48 hours

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O(n^2 + m^2 + pm)$ variables and $O(n^3 + m^2)$ clauses.

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O(n^2 + m^2 + pm)$ variables and $O(n^3 + m^2)$ clauses.

We will construct formula $\mathcal{F}(G, p)$ using three types of variables:

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O(n^2 + m^2 + pm)$ variables and $O(n^3 + m^2)$ clauses.

We will construct formula $\mathcal{F}(G, p)$ using three types of variables: • $\sigma(v_i, v_i) =$ true iff v_i is to the left of v_i along the spine

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O(n^2 + m^2 + pm)$ variables and $O(n^3 + m^2)$ clauses.

We will construct formula $\mathcal{F}(G, p)$ using three types of variables:

- $\sigma(v_i, v_j) =$ true iff v_i is to the left of v_j along the spine
- 2 $\phi_q(e_i) =$ true iff e_i is embedded on page q

く 何 ト く ヨ ト く ヨ ト

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O(n^2 + m^2 + pm)$ variables and $O(n^3 + m^2)$ clauses.

We will construct formula $\mathcal{F}(G, p)$ using three types of variables:

- $\sigma(v_i, v_j) =$ true iff v_i is to the left of v_j along the spine
- $\phi_q(e_i) =$ true iff e_i is embedded on page q
- $\chi(e_i, e_j) =$ true iff e_i and e_j are embedded on the same page

For graph G and $p \in \mathbb{N}$ there exist a SAT formula $\mathcal{F}(G, p)$ such that G has embedding on p pages if and only if $\mathcal{F}(G, p)$ is satisfiable. In addition, $\mathcal{F}(G, p)$ has $O(n^2 + m^2 + pm)$ variables and $O(n^3 + m^2)$ clauses.

We will construct formula $\mathcal{F}(G, p)$ using three types of variables:

- $\sigma(v_i, v_j) =$ true iff v_i is to the left of v_j along the spine
- $\phi_q(e_i) =$ true iff e_i is embedded on page q
- $\chi(e_i, e_j) =$ true iff e_i and e_j are embedded on the same page

And a few rules...

- 4 同 ト 4 三 ト - 4 三 ト - -

1 asymmetry:
$$\sigma(\mathbf{v}_i, \mathbf{v}_j) \leftrightarrow \neg \sigma(\mathbf{v}_j, \mathbf{v}_i)$$

2

イロト イボト イヨト イヨト

1 asymmetry:
$$\sigma(v_i, v_j) \leftrightarrow \neg \sigma(v_j, v_i)$$

3 transitivity:
$$\sigma(v_i, v_j) \land \sigma(v_j, v_k) \rightarrow \sigma(v_i, v_k)$$

2

イロト イボト イヨト イヨト

1 asymmetry:
$$\sigma(\mathbf{v}_i, \mathbf{v}_j) \leftrightarrow \neg \sigma(\mathbf{v}_j, \mathbf{v}_i)$$

- **2** transitivity: $\sigma(v_i, v_j) \land \sigma(v_j, v_k) \rightarrow \sigma(v_i, v_k)$
- **③** at least one page per edge: $\phi_1(e_i) \lor \phi_2(e_i) \lor ... \lor \phi_p(e_i)$

1 asymmetry:
$$\sigma(\mathbf{v}_i, \mathbf{v}_j) \leftrightarrow \neg \sigma(\mathbf{v}_j, \mathbf{v}_i)$$

- $e transitivity: \ \sigma(v_i, v_j) \land \sigma(v_j, v_k) \to \sigma(v_i, v_k)$
- **③** at least one page per edge: $\phi_1(e_i) \lor \phi_2(e_i) \lor ... \lor \phi_p(e_i)$
- both edges on the same page: $((\phi_1(e_i) \land \phi_1(e_j)) \lor ... \lor (\phi_p(e_i) \land \phi_p(e_j))) \to \chi(e_i, e_j)$

1 asymmetry:
$$\sigma(\mathbf{v}_i, \mathbf{v}_j) \leftrightarrow \neg \sigma(\mathbf{v}_j, \mathbf{v}_i)$$

- $e transitivity: \ \sigma(v_i, v_j) \land \sigma(v_j, v_k) \to \sigma(v_i, v_k)$
- **③** at least one page per edge: $\phi_1(e_i) \lor \phi_2(e_i) \lor ... \lor \phi_p(e_i)$
- both edges on the same page: $((\phi_1(e_i) \land \phi_1(e_j)) \lor ... \lor (\phi_p(e_i) \land \phi_p(e_j))) \to \chi(e_i, e_j)$
- In o crossings on one page:

1 asymmetry:
$$\sigma(\mathbf{v}_i, \mathbf{v}_j) \leftrightarrow \neg \sigma(\mathbf{v}_j, \mathbf{v}_i)$$

$$each are a first or (v_i, v_j) \wedge \sigma(v_j, v_k) \to \sigma(v_i, v_k)$$

- **③** at least one page per edge: $\phi_1(e_i) \lor \phi_2(e_i) \lor ... \lor \phi_p(e_i)$
- both edges on the same page: $((\phi_1(e_i) \land \phi_1(e_j)) \lor ... \lor (\phi_p(e_i) \land \phi_p(e_j))) \to \chi(e_i, e_j)$

In o crossings on one page:

$$\begin{array}{l} \chi((v_i, v_j), (v_k, v_\ell)) \rightarrow \\ \neg(\sigma(v_i, v_k) \land \sigma(v_k, v_j) \land \sigma(v_j, v_\ell)) \land \neg(\sigma(v_i, v_\ell) \land \sigma(v_\ell, v_j) \land \sigma(v_j, v_k)) \\ \land \neg(\sigma(v_j, v_k) \land \sigma(v_k, v_i) \land \sigma(v_i, v_\ell)) \land \neg(\sigma(v_j, v_\ell) \land \sigma(v_\ell, v_i) \land \sigma(v_i, v_k)) \\ \land \neg(\sigma(v_k, v_i) \land \sigma(v_i, v_\ell) \land \sigma(v_\ell, v_j)) \land \neg(\sigma(v_k, v_j) \land \sigma(v_j, v_\ell) \land \sigma(v_\ell, v_i)) \\ \land \neg(\sigma(v_\ell, v_i) \land \sigma(v_i, v_k) \land \sigma(v_k, v_j)) \land \neg(\sigma(v_\ell, v_j) \land \sigma(v_j, v_k) \land \sigma(v_k, v_i)) \end{array}$$

Filip Jasionowicz

Candidate graph

Bekos Michael A, Kaufmann Michael, Klute Fabian, Pupyrev Sergey, Raftopoulou Chrysanthi, Ueckerdt Torsten. Four pages are indeed necessary for planar graphs // arXiv preprint arXiv:2004.07630. 2020.

- Bekos Michael A, Kaufmann Michael, Zielke Christian. The book embedding problem from a SAT-solving perspective // Graph Drawing and Network Visualization: 23rd International Symposium, GD 2015, Los Angeles, CA, USA, September 24-26, 2015, Revised Selected Papers 23. 2015. 125–138.
- *Bernhart Frank, Kainen Paul C.* The book thickness of a graph // Journal of Combinatorial Theory, Series B. 1979. 27, 3. 320–331.
- Buss Jonathan F., Shor Peter W. On the pagenumber of planar graphs // Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing. New York, NY, USA: Association for Computing Machinery, 1984. 98–100. (STOC '84).

< □ > < □ > < □ > < □ > < □ > < □ >
- *Erdös Paul, Szekeres George.* A combinatorial problem in geometry // Compositio mathematica. 1935. 2. 463–470.
- Goldner A, Harary Frank. Note on a smallest nonhamiltonian maximal planar graph // Bull. Malaysian Math. Soc. 1975. 6, 1. 41–42.
- Heath L. Embedding Planar Graphs In Seven Pages // 25th Annual Symposium onFoundations of Computer Science, 1984. 1984. 74–83.
- Yannakakis Mihalis. Embedding planar graphs in four pages // Journal of Computer and System Sciences. 1989. 38, 1. 36–67.

< □ > < 同 > < 回 > < 回 > < 回 >