Another approach to non-repetitive colorings of graphs of bounded degree
Matthieu Rosenfeld, 2020

Presented by Katzper Michno, 25.01.2024.

Lovász local lemma

Lovász local lemma (Symmetric Version) (Lovász, 1975)

Lovász local lemma

Lovász local lemma (Symmetric Version) (Lovász, 1975)
Suppose $\mathbb{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ is a set of events in an arbitrary probability space. If $\forall_{i \in[n]}$:

- $\exists D_{i} \subseteq \mathbb{A}$ with $\left|D_{i}\right| \leq d$ such that A_{i} is mutually independent of $\mathbb{A} \backslash D_{i}$,
- $P\left(A_{i}\right) \leq p$,
and

$$
e p(d+1) \leq 1
$$

then

$$
P\left(\bigcap_{i=1}^{n} \bar{A}_{i}\right)>0
$$

Local lemma intuition

Let $\mathbb{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of bad events with small probabilities bounded by a constant p, i.e. $\forall_{i \in[n]} P\left(A_{i}\right) \leq p$.

Local lemma intuition

Let $\mathbb{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of bad events with small probabilities bounded by a constant p, i.e. $\forall_{i \in[n]} P\left(A_{i}\right) \leq p$.

Create a graph $G=(\mathbb{A}, E)$ where A_{i} is mutually independent of $\mathbb{A} \backslash N\left(A_{i}\right)$.

Local lemma intuition

Let $\mathbb{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of bad events with small probabilities bounded by a constant p, i.e. $\forall_{i \in[n]} P\left(A_{i}\right) \leq p$.

Create a graph $G=(\mathbb{A}, E)$ where A_{i} is mutually independent of $\mathbb{A} \backslash N\left(A_{i}\right)$.

Local lemma intuition

Let $\mathbb{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of bad events with small probabilities bounded by a constant p, i.e. $\forall_{i \in[n]} P\left(A_{i}\right) \leq p$.

Create a graph $G=(\mathbb{A}, E)$ where A_{i} is mutually independent of $\mathbb{A} \backslash N\left(A_{i}\right)$.

If the graph has small maximum outdegree, then the probability of avoiding all bad events is greater than 0 .
$\max _{i \in[n]} \operatorname{de} g_{\text {out }}\left(A_{i}\right)=2$

Local lemma intuition

Let $\mathbb{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of bad events with small probabilities bounded by a constant p, i.e. $\forall_{i \in[n]} P\left(A_{i}\right) \leq p$.

Create a graph $G=(\mathbb{A}, E)$ where A_{i} is mutually independent of $\mathbb{A} \backslash N\left(A_{i}\right)$.

If the graph has small maximum outdegree, then the probability of avoiding all bad events is greater than 0 .

Namely,

$$
\max _{i \in[n]} \operatorname{deg}_{\text {out }}\left(A_{i}\right) \leq \frac{1}{e p}-1
$$

$\max _{i \in[n]} \operatorname{deg}_{o u t}\left(A_{i}\right)=2$

Constructive proof of LLL

The original proof of LLL is non constructive.

Constructive proof of LLL

The original proof of LLL is non constructive.

Moser and Tardos (2010) published an alternative, constructive, algorithmic proof of LLL.

Constructive proof of LLL

The original proof of LLL is non constructive.

Moser and Tardos (2010) published an alternative, constructive, algorithmic proof of LLL.

This gave birth to Moser-Tardos Algorithm which efficiently constructs the solution asserted by LLL for the "variable model".

Constructive proof of LLL

The original proof of LLL is non constructive.

Moser and Tardos (2010) published an alternative, constructive, algorithmic proof of LLL.

This gave birth to Moser-Tardos Algorithm which efficiently constructs the solution asserted by LLL for the "variable model".

Not only that, but also inspired a new proof technique - entropy compression.

Non-repetitive graph colorings

A sequence $s_{1} \ldots s_{2 n}$ is a square if $s_{i}=s_{i+n}$ for each $i \in\{1, \ldots, n\}$.

Non-repetitive graph colorings

A sequence $s_{1} \ldots s_{2 n}$ is a square if $s_{i}=s_{i+n}$ for each $i \in\{1, \ldots, n\}$.

A sequence is repetitive if it contains a square as a consecutive subsequence. Otherwise it is non-repetitive.

Non-repetitive graph colorings

A sequence $s_{1} \ldots s_{2 n}$ is a square if $s_{i}=s_{i+n}$ for each $i \in\{1, \ldots, n\}$.

A sequence is repetitive if it contains a square as a consecutive subsequence. Otherwise it is non-repetitive.

repetitive

alfalfa

Non-repetitive graph colorings

A non-repetitive vertex coloring of a graph is such that every sequence of colors induced by a path is non-repetitive.

Non-repetitive graph colorings

A non-repetitive vertex coloring of a graph is such that every sequence of colors induced by a path is non-repetitive.

Non-repetitive graph colorings

A non-repetitive vertex coloring of a graph is such that every sequence of colors induced by a path is non-repetitive.

The non-repetitive number $\pi(G)$ is the minimal number of colors in a nonrepetitive coloring. Similarly, the non-repetitive index and list versions are denoted as $\pi^{\prime}(G), \pi_{c h}(G)$, and $\pi_{c h}^{\prime}(G)$.

Non-repetitive colorings of paths

Let L_{n} be a path of length n for all $n \in \mathbb{N}$.

Non-repetitive colorings of paths

Let L_{n} be a path of length n for all $n \in \mathbb{N}$.

- $\pi\left(L_{n}\right)=3$ for every $n \in \mathbb{N}$ [Thue, 1906] by construction,

Non-repetitive colorings of paths

Let L_{n} be a path of length n for all $n \in \mathbb{N}$.

- $\pi\left(L_{n}\right)=3$ for every $n \in \mathbb{N}$ [Thue, 1906] by construction,
- $\pi_{c h}\left(L_{n}\right) \leq 4$ for every $n \in \mathbb{N}$ [J. Grytczuk, J. Przybyło, X. Zhu, 2011] using LLL,

Non-repetitive colorings of paths

Let L_{n} be a path of length n for all $n \in \mathbb{N}$.

- $\pi\left(L_{n}\right)=3$ for every $n \in \mathbb{N}$ [Thue, 1906] by construction,
- $\pi_{c h}\left(L_{n}\right) \leq 4$ for every $n \in \mathbb{N}$ [J. Grytczuk, J. Przybyło, X. Zhu, 2011] using LLL,
- $\pi_{c h}\left(L_{n}\right) \leq 4$ for every $n \in \mathbb{N}$ [J. Grytczuk, J.Kozik, P. Micek, 2013] using entropy compression,

Non-repetitive colorings of paths

Let L_{n} be a path of length n for all $n \in \mathbb{N}$.

- $\pi\left(L_{n}\right)=3$ for every $n \in \mathbb{N}$ [Thue, 1906] by construction,
- $\pi_{c h}\left(L_{n}\right) \leq 4$ for every $n \in \mathbb{N}$ [J. Grytczuk, J. Przybyło, X. Zhu, 2011] using LLL,
- $\pi_{c h}\left(L_{n}\right) \leq 4$ for every $n \in \mathbb{N}$ [J. Grytczuk, J.Kozik, P. Micek, 2013] using entropy compression,
- $\pi_{c h}\left(L_{n}\right) \leq 4$ for every $n \in \mathbb{N}[\mathrm{M}$. Rosenfeld, 2020] using a new unnamed technique....

$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression

Consider the following algorithm:

$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression

Consider the following algorithm:

```
Algorithm 1: Choosing a nonrepetitive sequence from lists of size 4
    \(i \leftarrow 1\)
    while \(i \leqslant n\) do
        \(s_{i} \leftarrow\) random element of \(L_{i}\)
        if \(s_{1}, \ldots, s_{i}\) is nonrepetitive then
        \(i \leftarrow i+1\)
        else
        there is exactly one repetition, say \(s_{i-2 h+1}, \ldots, s_{i-h}, s_{i-h+1}, \ldots, s_{i}\)
        \(i \leftarrow i-h+1\)
```


$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression

$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression

we remove the second half of the repetition and continue...

$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression

If a satisfactory coloring does not exist, the algorithm will never terminate.

$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression

If a satisfactory coloring does not exist, the algorithm will never terminate.
So the idea is simple - we prove that it must terminate. In other words, it cannot go on forever.

$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression

If a satisfactory coloring does not exist, the algorithm will never terminate.
So the idea is simple - we prove that it must terminate. In other words, it cannot go on forever.

Let's assume that the algorithm has not terminated after M steps. We can encode the choices made by the algorithm in two ways:
$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression
If a satisfactory coloring does not exist, the algorithm will never terminate.
So the idea is simple - we prove that it must terminate. In other words, it cannot go on forever.

Let's assume that the algorithm has not terminated after M steps. We can encode the choices made by the algorithm in two ways:

1. Let a sequence $\left(r_{1}, \ldots, r_{M}\right) \in\{0,1,2,3\}^{M}$ be an evaluation of the algorithm. r_{i} simply corresponds to the color chosen in the i-th step.
$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression
If a satisfactory coloring does not exist, the algorithm will never terminate.
So the idea is simple - we prove that it must terminate. In other words, it cannot go on forever.

Let's assume that the algorithm has not terminated after M steps. We can encode the choices made by the algorithm in two ways:

1. Let a sequence $\left(r_{1}, \ldots, r_{M}\right) \in\{0,1,2,3\}^{M}$ be an evaluation of the algorithm. r_{i} simply corresponds to the color chosen in the i-th step.
2. Let d_{i} be the difference between the pointer positions in step $i-1$ and i for $2 \leq i \leq M$ and $d_{1}=1$. Note that $d_{i} \leq 1$ and $d_{i} \leq 0$ if we had to discard a suffix of already build sequence of colors.
$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression
If a satisfactory coloring does not exist, the algorithm will never terminate.
So the idea is simple - we prove that it must terminate. In other words, it cannot go on forever.

Let's assume that the algorithm has not terminated after M steps. We can encode the choices made by the algorithm in two ways:

1. Let a sequence $\left(r_{1}, \ldots, r_{M}\right) \in\{0,1,2,3\}^{M}$ be an evaluation of the algorithm. r_{i} simply corresponds to the color chosen in the i-th step.
2. Let d_{i} be the difference between the pointer positions in step $i-1$ and i for $2 \leq i \leq M$ and $d_{1}=1$. Note that $d_{i} \leq 1$ and $d_{i} \leq 0$ if we had to discard a suffix of already build sequence of colors.
Additionaly, let S_{i} be the sequence of colors built after i steps. We call a pair $\left(\left(d_{1}, \ldots, d_{M}\right), S_{M}\right)$ a log.

$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression

1. Let a sequence $\left(r_{1}, \ldots, r_{M}\right) \in\{0,1,2,3\}^{M}$ be an evaluation of the algorithm. r_{i} simply corresponds to the color chosen in the i-th step.
2. Let d_{i} be the difference between the pointer positions in step $i-1$ and i for $2 \leq i \leq M$ and $d_{1}=1$. Note that $d_{i} \leq 1$ and $d_{i} \leq 0$ if we had to discard a suffix of already build sequence of colors.

Additionaly, let S_{i} be the sequence of colors built after i steps. We call a pair $\left(\left(d_{1}, \ldots, d_{M}\right), S_{M}\right)$ a log.
$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression

1. Let a sequence $\left(r_{1}, \ldots, r_{M}\right) \in\{0,1,2,3\}^{M}$ be an evaluation of the algorithm. r_{i} simply corresponds to the color chosen in the i-th step.
2. Let d_{i} be the difference between the pointer positions in step $i-1$ and i for $2 \leq i \leq M$ and $d_{1}=1$. Note that $d_{i} \leq 1$ and $d_{i} \leq 0$ if we had to discard a suffix of already build sequence of colors.

Additionaly, let S_{i} be the sequence of colors built after i steps. We call a pair $\left(\left(d_{1}, \ldots, d_{M}\right), S_{M}\right)$ a log.

The key idea is that we can always recover the evaluation from the log, and the other way around; every evaluation corresponds to a unique log.
$\pi_{c h}\left(L_{n}\right) \leq 4$ with entropy compression

1. Let a sequence $\left(r_{1}, \ldots, r_{M}\right) \in\{0,1,2,3\}^{M}$ be an evaluation of the algorithm. r_{i} simply corresponds to the color chosen in the i-th step.
2. Let d_{i} be the difference between the pointer positions in step $i-1$ and i for $2 \leq i \leq M$ and $d_{1}=1$. Note that $d_{i} \leq 1$ and $d_{i} \leq 0$ if we had to discard a suffix of already build sequence of colors.

Additionaly, let S_{i} be the sequence of colors built after i steps. We call a pair $\left(\left(d_{1}, \ldots, d_{M}\right), S_{M}\right)$ a log.

The key idea is that we can always recover the evaluation from the log, and the other way around; every evaluation corresponds to a unique log.
But the number of possible evaluations is exactly 4^{M}, while one can show that the number of different logs is $o\left(4^{M}\right)$ (the number of sequences $\left(d_{1}, \ldots, d_{2}\right)$ can be estimated using Catalan numbers).

$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Now let's prove the same thing using a new approach introduced in the paper.
$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique
Now let's prove the same thing using a new approach introduced in the paper.
We will prove something stronger, namely:

$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Now let's prove the same thing using a new approach introduced in the paper.
We will prove something stronger, namely:

Lemma. Let L be a list assignment of a path P such that all lists are of size 4 . Let C_{n} be the number of non-repetitive colorings of the first n vertices of P that respect L. Then for any integer $n<|P|$, we have

$$
C_{n+1} \geq 2 C_{n}
$$

$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique
Now let's prove the same thing using a new approach introduced in the paper.
We will prove something stronger, namely:

Lemma. Let L be a list assignment of a path P such that all lists are of size 4 . Let C_{n} be the number of non-repetitive colorings of the first n vertices of P that respect L. Then for any integer $n<|P|$, we have

$$
C_{n+1} \geq 2 C_{n}
$$

Note that this lemma implies something more than the entropy compression argument - that the number of non-repetitive colorings of a path of length k from lists of 4 colours is at least 2^{k} !
$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique
Proof:

$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Proof:

We proceed by induction on n, where $C_{0}=1$ and $C_{1}=4$.
$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Proof:

We proceed by induction on n, where $C_{0}=1$ and $C_{1}=4$.
Let's assume that we have an integer n such that for all $i \leq n$ we have $C_{i} \geq$ $2 C_{i-1}$. We will show that $C_{n+1} \geq C_{n}$.
$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Proof:

We proceed by induction on n, where $C_{0}=1$ and $C_{1}=4$.
Let's assume that we have an integer n such that for all $i \leq n$ we have $C_{i} \geq$ $2 C_{i-1}$. We will show that $C_{n+1} \geq C_{n}$.

We define set F to be the set of colorings of the first $n+1$ vertices that are repetitive, but induce a non-repetitive coloring on the first n vertices.
$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Proof:

We proceed by induction on n, where $C_{0}=1$ and $C_{1}=4$.
Let's assume that we have an integer n such that for all $i \leq n$ we have $C_{i} \geq$ $2 C_{i-1}$. We will show that $C_{n+1} \geq C_{n}$.

We define set F to be the set of colorings of the first $n+1$ vertices that are repetitive, but induce a non-repetitive coloring on the first n vertices.

Clearly, $C_{n+1}=4 C_{n}-|F|$, so we need an upper bound for $|F|$.
$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Proof:
We proceed by induction on n, where $C_{0}=1$ and $C_{1}=4$.
Let's assume that we have an integer n such that for all $i \leq n$ we have $C_{i} \geq$ $2 C_{i-1}$. We will show that $C_{n+1} \geq C_{n}$.

We define set F to be the set of colorings of the first $n+1$ vertices that are repetitive, but induce a non-repetitive coloring on the first n vertices.

Clearly, $C_{n+1}=4 C_{n}-|F|$, so we need an upper bound for $|F|$.
Let $F_{i} \subseteq F$ be the bad colorings that contain a square of length $2 i$.

$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Proof:

Let $F_{i} \subseteq F$ be the bad colorings that contain a square of length $2 i$.

$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Proof:

Let $F_{i} \subseteq F$ be the bad colorings that contain a square of length $2 i$.
Every coloring $c \in F_{i}$ induces a unique non-repetitive coloring on first $n+1-i$ vertices.

$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Proof:
Let $F_{i} \subseteq F$ be the bad colorings that contain a square of length $2 i$.
Every coloring $c \in F_{i}$ induces a unique non-repetitive coloring on first $n+1-i$ vertices.
proper (non-repetitive) coloring of $1 . . n+1-\mathrm{i}$

x orcvaeca ec

a square of length $2 i$

$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Proof:

Let $F_{i} \subseteq F$ be the bad colorings that contain a square of length $2 i$.
Every coloring $c \in F_{i}$ induces a unique non-repetitive coloring on first $n+1-i$ vertices.

Therefore $\left|F_{i}\right| \leq C_{n+1-i}$.
$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique
Proof:
Let $F_{i} \subseteq F$ be the bad colorings that contain a square of length $2 i$.
Every coloring $c \in F_{i}$ induces a unique non-repetitive coloring on first $n+1-i$ vertices.

Therefore $\left|F_{i}\right| \leq C_{n+1-i}$.
By induction hypothesis we have $C_{n+1-i} \leq 2^{1-i} C_{n}$, and since $F=\bigcup_{i=1}^{n / 2} F_{i}$:

$\pi_{c h}\left(L_{n}\right) \leq 4$ with the new technique

Proof:

Let $F_{i} \subseteq F$ be the bad colorings that contain a square of length $2 i$.
Every coloring $c \in F_{i}$ induces a unique non-repetitive coloring on first $n+1-i$ vertices.

Therefore $\left|F_{i}\right| \leq C_{n+1-i}$.
By induction hypothesis we have $C_{n+1-i} \leq 2^{1-i} C_{n}$, and since $F=\bigcup_{i=1}^{n / 2} F_{i}$:

$$
\begin{aligned}
C_{n+1} & \geq 4 C_{n}-|F| \\
& \geq 4 C_{n}-\sum_{i=1}^{n / 2} 2^{1-i} C_{n} \\
& \geq 2 C_{n} .
\end{aligned}
$$

The new technique generalization

The author tries to extract the abstraction out of this approach so that it can be applied for general graphs.

The new technique generalization

The author tries to extract the abstraction out of this approach so that it can be applied for general graphs.
Suppose we want to show that any graph from some class \mathcal{C} admits a valid coloring with at most γ colours.

The new technique generalization

The author tries to extract the abstraction out of this approach so that it can be applied for general graphs.
Suppose we want to show that any graph from some class \mathcal{C} admits a valid coloring with at most γ colours.
Moreover, suppose that both the class and the valid colorings are hereditary in the sense that the graph induced by a partial coloring also belongs to \mathcal{C} and that every subcoloring of a valid coloring is also valid.

The new technique generalization

The author tries to extract the abstraction out of this approach so that it can be applied for general graphs.
Suppose we want to show that any graph from some class \mathcal{C} admits a valid coloring with at most γ colours.
Moreover, suppose that both the class and the valid colorings are hereditary in the sense that the graph induced by a partial coloring also belongs to \mathcal{C} and that every subcoloring of a valid coloring is also valid.
Let $c(G)$ be the set of valid colorings of graph G.

The new technique generalization

The author tries to extract the abstraction out of this approach so that it can be applied for general graphs.
Suppose we want to show that any graph from some class \mathcal{C} admits a valid coloring with at most γ colours.
Moreover, suppose that both the class and the valid colorings are hereditary in the sense that the graph induced by a partial coloring also belongs to \mathcal{C} and that every subcoloring of a valid coloring is also valid. Let $c(G)$ be the set of valid colorings of graph G.
Something we would like to show, which is a generalization of lemma proven in previous slides, is that there exists a constant α such that for every $G \in \mathcal{C}$ and any e - element of G (a vertex or an edge):

The new technique generalization

The author tries to extract the abstraction out of this approach so that it can be applied for general graphs.
Suppose we want to show that any graph from some class \mathcal{C} admits a valid coloring with at most γ colours.
Moreover, suppose that both the class and the valid colorings are hereditary in the sense that the graph induced by a partial coloring also belongs to \mathcal{C} and that every subcoloring of a valid coloring is also valid.
Let $c(G)$ be the set of valid colorings of graph G.
Something we would like to show, which is a generalization of lemma proven in previous slides, is that there exists a constant α such that for every $G \in \mathcal{C}$ and any e - element of G (a vertex or an edge):

$$
|c(G)| \geq \alpha \cdot|c(G \backslash\{e\})|
$$

The new technique generalization

The author tries to extract the abstraction out of this approach so that it can be applied for general graphs.
Suppose we want to show that any graph from some class \mathcal{C} admits a valid coloring with at most γ colours.
Moreover, suppose that both the class and the valid colorings are hereditary in the sense that the graph induced by a partial coloring also belongs to \mathcal{C} and that every subcoloring of a valid coloring is also valid.
Let $c(G)$ be the set of valid colorings of graph G.
Something we would like to show, which is a generalization of lemma proven in previous slides, is that there exists a constant α such that for every $G \in \mathcal{C}$ and any e - element of G (a vertex or an edge):

$$
|c(G)| \geq \alpha \cdot|c(G \backslash\{e\})|
$$

For example, in the previous lemma we had $\gamma=4$ and $\alpha=2$.

The new technique generalization

Let F be the set of invalid colorings of G inducing a valid coloring of $G \backslash\{e\}$.

The new technique generalization

Let F be the set of invalid colorings of G inducing a valid coloring of $G \backslash\{e\}$.

Just like before, straight from definition we have:

The new technique generalization

Let F be the set of invalid colorings of G inducing a valid coloring of $G \backslash\{e\}$.

Just like before, straight from definition we have:

$$
|c(G)|=\gamma|c(G \backslash\{e\})|-|F| .
$$

The new technique generalization

Let F be the set of invalid colorings of G inducing a valid coloring of $G \backslash\{e\}$.

Just like before, straight from definition we have:

$$
|c(G)|=\gamma|c(G \backslash\{e\})|-|F| .
$$

And so the main issue will be to upper bound $|F|$, just like we did in the previous lemma.

The new technique generalization

The author provides a sufficient condition for all of this to work the inductive step:

The new technique generalization

The author provides a sufficient condition for all of this to work the inductive step:
Suppose we find coefficients $\left(a_{i}\right)_{i \geq 1}$ such that

$$
|F| \leq \sum_{i \geq 1} a_{i} \frac{|c(G \backslash\{e\})|}{\alpha^{i-1}}
$$

The new technique generalization

The author provides a sufficient condition for all of this to work the inductive step:
Suppose we find coefficients $\left(a_{i}\right)_{i \geq 1}$ such that

$$
|F| \leq \sum_{i \geq 1} a_{i} \frac{|c(G \backslash\{e\})|}{\alpha^{i-1}}
$$

and

$$
\sum_{i \geq 1} \frac{a_{i}}{\alpha^{i-1}} \leq(\gamma-\alpha)
$$

The new technique generalization

The author provides a sufficient condition for all of this to work the inductive step:
Suppose we find coefficients $\left(a_{i}\right)_{i \geq 1}$ such that

$$
|F| \leq \sum_{i \geq 1} a_{i} \frac{|c(G \backslash\{e\})|}{\alpha^{i-1}}
$$

and

$$
\sum_{i \geq 1} \frac{a_{i}}{\alpha^{i-1}} \leq(\gamma-\alpha)
$$

Then, indeed

$$
|c(G)| \geq \alpha|c(G \backslash\{e\})|
$$

The new technique generalization

The author provides a sufficient condition for all of this to work the inductive step:

Suppose we find coefficients $\left(a_{i}\right)_{i \geq 1}$ such that

$$
|F| \leq \sum_{i \geq 1} a_{i} \frac{|c(G \backslash\{e\})|}{\alpha^{i-1}}
$$

And in practice, this boils down to expressing F as the union of colorings $\left(F_{i}\right)_{i \geq 1}$ such that for all i there is an injection from F_{i} to the union of the colorings of a_{i} different subgraphs of $G \backslash\{e\}$ of cardinality $|G|-i$.

The new technique generalization

The author provides a sufficient condition for all of this to work the inductive step:
Suppose we find coefficients $\left(a_{i}\right)_{i \geq 1}$ such that

$$
|F| \leq \sum_{i \geq 1} a_{i} \frac{|c(G \backslash\{e\})|}{\alpha^{i-1}}
$$

And in practice, this boils down to expressing F as the union of colorings $\left(F_{i}\right)_{i \geq 1}$ such that for all i there is an injection from F_{i} to the union of the colorings of a_{i} different subgraphs of $G \backslash\{e\}$ of cardinality $|G|-i$.

And we want the coefficients $\left(a_{i}\right)$ to be small, in the previous lemma we had $a_{i}=1$. If they are small enough, everything should be fine.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

Let's try to prove something in general graphs as an example.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

Let's try to prove something in general graphs as an example.
Theorem. For every graph G with maximum degree $\Delta \geq 1$, we have

$$
\pi_{c h}(G) \leq \Delta^{2}+\frac{3}{2^{\frac{2}{3}}} \Delta^{\frac{5}{3}}+2^{\frac{2}{3}} \Delta^{\frac{4}{3}}
$$

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
Let's try to prove something in general graphs as an example.
Theorem. For every graph G with maximum degree $\Delta \geq 1$, we have

$$
\pi_{c h}(G) \leq \Delta^{2}+\frac{3}{2^{\frac{2}{3}}} \Delta^{\frac{5}{3}}+2^{\frac{2}{3}} \Delta^{\frac{4}{3}}
$$

Again - we prove something stronger, let

$$
\begin{gathered}
\delta=\frac{3}{2^{\frac{2}{3}}}+2^{\frac{2}{3}} \Delta^{-\frac{1}{3}}+\Delta^{-\frac{2}{3}} \\
\gamma=\Delta(\Delta-1)\left(1+\delta+\Delta^{-\frac{1}{3}}\right)+1 \\
\alpha=\Delta(\Delta+1)\left(1+2^{\frac{1}{3}} \Delta^{-\frac{1}{3}}\right) .
\end{gathered}
$$

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

Lemma. Let $\Delta \geq 2$ and G be a graph of maximal degree at most Δ and L be a list assignment of G. Suppose each list is of size at least γ, then for any vertex v of G we have

$$
\left|C_{L}(G)\right| \geq \alpha\left|C_{L}(G \backslash\{v\})\right|
$$

where $C_{L}(G)$ is the set of non-repetitive colorings of G respecting L.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

Lemma. Let $\Delta \geq 2$ and G be a graph of maximal degree at most Δ and L be a list assignment of G. Suppose each list is of size at least γ, then for any vertex v of G we have

$$
\left|C_{L}(G)\right| \geq \alpha\left|C_{L}(G \backslash\{v\})\right|
$$

where $C_{L}(G)$ is the set of non-repetitive colorings of G respecting L.

It's obvious that this is indeed a stronger statement, but let's believe it for the sake of not being too technical today.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

Instead, let's focus on the core idea in the induction step of the lemma proof.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

Instead, let's focus on the core idea in the induction step of the lemma proof.

Again, let F be the set of repetitive colorings of G respecting L which induce a non-repetitive coloring on $G \backslash\{v\}$.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

Instead, let's focus on the core idea in the induction step of the lemma proof.

Again, let F be the set of repetitive colorings of G respecting L which induce a non-repetitive coloring on $G \backslash\{v\}$.

We write $F=\bigcup_{i \geq 1} F_{i}$, where F_{i} is the set of colorings for F that contain a path of length $2 i$ inducing a square.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

We need several observations. For each coloring $c \in F_{i}$ there is a path of length $2 i$ such that

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

We need several observations. For each coloring $c \in F_{i}$ there is a path of length $2 i$ such that

- p induces a square in c,
- p contains v and we can call p^{\prime} the half of p that contains v,
- the coloring induced over $G \backslash p^{\prime}$ is non-repetitive,
- p and the coloring induced over $G \backslash p^{\prime}$ uniquely determines c.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

We need several observations. For each coloring $c \in F_{i}$ there is a path of length $2 i$ such that

- p induces a square in c,
- p contains v and we can call p^{\prime} the half of p that contains v,
- the coloring induced over $G \backslash p^{\prime}$ is non-repetitive,
- p and the coloring induced over $G \backslash p^{\prime}$ uniquely determines c.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

We need several observations. For each coloring $c \in F_{i}$ there is a path of length $2 i$ such that

- p induces a square in c,
- p contains v and we can call p^{\prime} the half of p that contains v,
- the coloring induced over $G \backslash p^{\prime}$ is non-repetitive,
- p and the coloring induced over $G \backslash p^{\prime}$ uniquely determines c.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
We need several observations. For each coloring $c \in F_{i}$ there is a path of length $2 i$ such that

- p induces a square in c,
- p contains v and we can call p^{\prime} the half of p that contains v,
- the coloring induced over $G \backslash p^{\prime}$ is non-repetitive,
- p and the coloring induced over $G \backslash p^{\prime}$ uniquely determines c.

From induction hypothesis we have

$$
\left|C_{L}\left(G \backslash p^{\prime}\right)\right| \leq \frac{\mid C_{L}(G \backslash\{v\} \mid}{\alpha^{i-1}} .
$$

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
We need several observations. For each coloring $c \in F_{i}$ there is a path of length $2 i$ such that

- p induces a square in c,
- p contains v and we can call p^{\prime} the half of p that contains v,
- the coloring induced over $G \backslash p^{\prime}$ is non-repetitive,
- p and the coloring induced over $G \backslash p^{\prime}$ uniquely determines c.

From induction hypothesis we have

$$
\left|C_{L}\left(G \backslash p^{\prime}\right)\right| \leq \frac{\mid C_{L}(G \backslash\{v\} \mid}{\alpha^{i-1}} .
$$

Let a_{i} be the number of possible choices of p (the number of paths of length $2 i$ going through v). Then

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
We need several observations. For each coloring $c \in F_{i}$ there is a path of length $2 i$ such that

- p induces a square in c,
- p contains v and we can call p^{\prime} the half of p that contains v,
- the coloring induced over $G \backslash p^{\prime}$ is non-repetitive,
- p and the coloring induced over $G \backslash p^{\prime}$ uniquely determines c.

From induction hypothesis we have

$$
\left|C_{L}\left(G \backslash p^{\prime}\right)\right| \leq \frac{\mid C_{L}(G \backslash\{v\} \mid}{\alpha^{i-1}} .
$$

Let a_{i} be the number of possible choices of p (the number of paths of length $2 i$ going through v). Then

$$
\left|F_{i}\right| \leq a_{i} \cdot \frac{\left|C_{L}(G \backslash\{v\})\right|}{\alpha^{i-1}} .
$$

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

So if we find a good enough boud for a_{i}, we are done.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.
Fix $k \in\{0,1, \ldots, i-1\}$. Let's bound the number of paths of length $2 i$ going through v such that v splits the path into two parts of lengths k and $2 i-k-1$.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$

So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.
Fix $k \in\{0,1, \ldots, i-1\}$. Let's bound the number of paths of length $2 i$ going through v such that v splits the path into two parts of lengths k and $2 i-k-1$.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.
Fix $k \in\{0,1, \ldots, i-1\}$. Let's bound the number of paths of length $2 i$ going through v such that v splits the path into two parts of lengths k and $2 i-k-1$.

If we want to construct such path, we can first find the part of length k and then the second. Do it vertex after vertex. Note that in the first move we have at most Δ possibilities and for each next move at most $\Delta-1$.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.
Fix $k \in\{0,1, \ldots, i-1\}$. Let's bound the number of paths of length $2 i$ going through v such that v splits the path into two parts of lengths k and $2 i-k-1$.

If we want to construct such path, we can first find the part of length k and then the second. Do it vertex after vertex. Note that in the first move we have at most Δ possibilities and for each next move at most $\Delta-1$.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.
Fix $k \in\{0,1, \ldots, i-1\}$. Let's bound the number of paths of length $2 i$ going through v such that v splits the path into two parts of lengths k and $2 i-k-1$.

If we want to construct such path, we can first find the part of length k and then the second. Do it vertex after vertex. Note that in the first move we have at most Δ possibilities and for each next move at most $\Delta-1$.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.
Fix $k \in\{0,1, \ldots, i-1\}$. Let's bound the number of paths of length $2 i$ going through v such that v splits the path into two parts of lengths k and $2 i-k-1$.

If we want to construct such path, we can first find the part of length k and then the second. Do it vertex after vertex. Note that in the first move we have at most Δ possibilities and for each next move at most $\Delta-1$.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.
Fix $k \in\{0,1, \ldots, i-1\}$. Let's bound the number of paths of length $2 i$ going through v such that v splits the path into two parts of lengths k and $2 i-k-1$.

If we want to construct such path, we can first find the part of length k and then the second. Do it vertex after vertex. Note that in the first move we have at most Δ possibilities and for each next move at most $\Delta-1$.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.
Fix $k \in\{0,1, \ldots, i-1\}$. Let's bound the number of paths of length $2 i$ going through v such that v splits the path into two parts of lengths k and $2 i-k-1$.

If we want to construct such path, we can first find the part of length k and then the second. Do it vertex after vertex. Note that in the first move we have at most Δ possibilities and for each next move at most $\Delta-1$.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.
Fix $k \in\{0,1, \ldots, i-1\}$. Let's bound the number of paths of length $2 i$ going through v such that v splits the path into two parts of lengths k and $2 i-k-1$.

If we want to construct such path, we can first find the part of length k and then the second. Do it vertex after vertex. Note that in the first move we have at most Δ possibilities and for each next move at most $\Delta-1$.
After summing over all values of k, we get $a_{i} \leq i \Delta(\Delta-1)^{2 i-2}$.

Example: $\pi_{c h}(G)$ for bounded $\Delta(G)$
So if we find a good enough boud for a_{i}, we are done.
And this is where we use the bound for maximal degree in G.
Fix $k \in\{0,1, \ldots, i-1\}$. Let's bound the number of paths of length $2 i$ going through v such that v splits the path into two parts of lengths k and $2 i-k-1$.

If we want to construct such path, we can first find the part of length k and then the second. Do it vertex after vertex. Note that in the first move we have at most Δ possibilities and for each next move at most $\Delta-1$.
After summing over all values of k, we get $a_{i} \leq i \Delta(\Delta-1)^{2 i-2}$.
Turns out this is enough to complete the proof after some calculations.

Contribution

The author also mentions another, similar problem:

Contribution

The author also mentions another, similar problem:
The weak Total Thue coloring of a graph is a coloring of both vertices and edges, such that the sequence of colors on consequtive vertices and edges in every path in G is non-repetitive.

Contribution

The author also mentions another, similar problem:
The weak Total Thue coloring of a graph is a coloring of both vertices and edges, such that the sequence of colors on consequtive vertices and edges in every path in G is non-repetitive.

A weak Total Thue coloring is called a strong Tutal Thue coloring if it is additionally vertex-non-repetitive and edge-non-repetitive.

Contribution

The author also mentions another, similar problem:
The weak Total Thue coloring of a graph is a coloring of both vertices and edges, such that the sequence of colors on consequtive vertices and edges in every path in G is non-repetitive.

A weak Total Thue coloring is called a strong Tutal Thue coloring if it is additionally vertex-non-repetitive and edge-non-repetitive.

The minimum number of colors required for these colorings is denoted as $\pi_{T_{w}}(G)$ and $\pi_{T}(G)$, respectively.

Contribution

The author also mentions another, similar problem:
The weak Total Thue coloring of a graph is a coloring of both vertices and edges, such that the sequence of colors on consequtive vertices and edges in every path in G is non-repetitive.

A weak Total Thue coloring is called a strong Tutal Thue coloring if it is additionally vertex-non-repetitive and edge-non-repetitive.

The minimum number of colors required for these colorings is denoted as $\pi_{T_{w}}(G)$ and $\pi_{T}(G)$, respectively.

Again, there are also list versions denoted as $\pi_{T_{w} c h}(G)$ and $\pi_{T c h}(G)$.

Contribution

Here is a summary of the author contributions in the paper (Δ always denotes the maximal vertex degree in graph):

Contribution

Here is a summary of the author contributions in the paper (Δ always denotes the maximal vertex degree in graph):

new bound	previously known best bound
$\pi_{c h}(G) \leq \Delta^{2}+\frac{3}{2^{\frac{2}{3}}} \Delta^{\frac{5}{3}}+2^{\frac{2}{3}} \Delta^{\frac{4}{3}}$	$\pi_{c h}(G) \leq \Delta^{2}+\frac{3}{2^{\frac{2}{3}}} \Delta^{\frac{5}{3}}+2^{\frac{2}{3}} \Delta^{\frac{4}{3}}+2 \Delta+\mathcal{O}\left(\Delta^{\frac{2}{3}}\right)$
$\pi_{T_{w} c h}(G) \leq 6 \Delta$	$? ? ?$
$\pi_{T_{w} c h}(G) \leq\lceil 4.25 \Delta\rceil$ for $\Delta \geq 300$	$? ? ?$
$\pi_{T c h}(G) \leq \Delta^{2}+\frac{3}{2^{\frac{1}{3}}} \Delta^{\frac{5}{3}}+8 \Delta^{\frac{4}{3}}+1$	$\pi_{T c h}(G) \leq \Delta^{2}+2^{\frac{4}{3}} \Delta^{\frac{5}{3}}+\mathcal{O}\left(\Delta^{\frac{4}{3}}\right)$

The end

Thank you!

