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Lovász local lemma

Lovász local lemma (Symmetric Version) (Lovász, 1975)

Suppose A = {A1, . . . , An} is a set of events in an arbitrary probability space.
If ∀i∈[n]:
• ∃Di ⊆ A with |Di| ≤ d such that Ai is mutually independent of A \Di,
• P (Ai) ≤ p,

and

ep(d+ 1) ≤ 1

then

P

(
n⋂

i=1

Āi

)
> 0
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Local lemma intuition

Let A = {A1, . . . , An} be a set of bad events with small probabilities
bounded by a constant p, i.e. ∀i∈[n] P (Ai) ≤ p.

Create a graph G = (A, E) where Ai is mutually independent of A \N(Ai).

If the graph has small maximum out-
degree, then the probability of avoid-
ing all bad events is greater than 0.

maxi∈[n] degout(Ai) = 2
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maxi∈[n] degout(Ai) ≤ 1
ep − 1

Namely,
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Constructive proof of LLL

The original proof of LLL is non constructive.

Moser and Tardos (2010) published an alternative, constructive, algorithmic
proof of LLL.

This gave birth to Moser-Tardos Algorithm which efficiently constructs the
solution asserted by LLL for the ”variable model”.

Not only that, but also inspired a new proof technique - entropy compression.
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Non-repetitive graph colorings

A non-repetitive vertex coloring of a graph is such that every sequence of
colors induced by a path is non-repetitive.

a a

a

c

b

b

b

The non-repetitive number π(G) is the minimal number of colors in a non-
repetitive coloring. Similarly, the non-repetitive index and list versions are
denoted as π′(G), πch(G), and π′ch(G).
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Non-repetitive colorings of paths

• π(Ln) = 3 for every n ∈ N [Thue, 1906] by construction,

Let Ln be a path of length n for all n ∈ N.

• πch(Ln) ≤ 4 for every n ∈ N [J. Grytczuk, J. Przyby lo, X. Zhu, 2011] using
LLL,

• πch(Ln) ≤ 4 for every n ∈ N [J. Grytczuk, J.Kozik, P. Micek, 2013] using
entropy compression,

• πch(Ln) ≤ 4 for every n ∈ N [M. Rosenfeld, 2020] using a new unnamed
technique....
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error! a repetition occured
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πch(Ln) ≤ 4 with entropy compression

we remove the second
half of the repetition and
continue...
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πch(Ln) ≤ 4 with entropy compression

1. Let a sequence (r1, . . . , rM ) ∈ {0, 1, 2, 3}M be an evaluation of the algo-
rithm. ri simply corresponds to the color chosen in the i-th step.

2. Let di be the difference between the pointer positions in step i− 1 and i for
2 ≤ i ≤ M and d1 = 1. Note that di ≤ 1 and di ≤ 0 if we had to discard a
suffix of already build sequence of colors.

Additionaly, let Si be the sequence of colors built after i steps. We call a pair
((d1, . . . , dM ), SM ) a log.

The key idea is that we can always recover the evaluation from the log,
and the other way around; every evaluation corresponds to a unique log.

But the number of possible evaluations is exactly 4M , while one can show that
the number of different logs is o(4M ) (the number of sequences (d1, . . . , d2)
can be estimated using Catalan numbers).
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Now let’s prove the same thing using a new approach introduced in the paper.

We will prove something stronger, namely:

Lemma. Let L be a list assignment of a path P such that all lists
are of size 4. Let Cn be the number of non-repetitive colorings
of the first n vertices of P that respect L. Then for any integer
n < |P |, we have

Cn+1 ≥ 2Cn

Note that this lemma implies something more than the entropy compression
argument - that the number of non-repetitive colorings of a path of length k
from lists of 4 colours is at least 2k!
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︷ ︸︸ ︷

a square of length 2i

proper (non-repetitive) coloring of 1..n+1-i



9

πch(Ln) ≤ 4 with the new technique

Proof:

Let Fi ⊆ F be the bad colorings that contain a square of length 2i.

Every coloring c ∈ Fi induces a unique non-repetitive coloring on first n+ 1− i
vertices.

Therefore |Fi| ≤ Cn+1−i.



9

πch(Ln) ≤ 4 with the new technique

Proof:

Let Fi ⊆ F be the bad colorings that contain a square of length 2i.

Every coloring c ∈ Fi induces a unique non-repetitive coloring on first n+ 1− i
vertices.

Therefore |Fi| ≤ Cn+1−i.

By induction hypothesis we have Cn+1−i ≤ 21−iCn, and since F=
⋃n/2

i=1Fi:



9

πch(Ln) ≤ 4 with the new technique

Proof:

Let Fi ⊆ F be the bad colorings that contain a square of length 2i.

Every coloring c ∈ Fi induces a unique non-repetitive coloring on first n+ 1− i
vertices.

Therefore |Fi| ≤ Cn+1−i.

By induction hypothesis we have Cn+1−i ≤ 21−iCn, and since F=
⋃n/2

i=1Fi:

Cn+1 ≥ 4Cn − |F |

≥ 4Cn −
n/2∑
i=1

21−iCn

≥ 2Cn.
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The new technique generalization

The author tries to extract the abstraction out of this approach so that it can
be applied for general graphs.

Suppose we want to show that any graph from some class C admits a valid
coloring with at most γ colours.

Moreover, suppose that both the class and the valid colorings are hereditary
in the sense that the graph induced by a partial coloring also belongs to C and
that every subcoloring of a valid coloring is also valid.

Let c(G) be the set of valid colorings of graph G.

Something we would like to show, which is a generalization of lemma proven in
previous slides, is that there exists a constant α such that for every G ∈ C and
any e- element of G (a vertex or an edge):

|c(G)| ≥ α · |c(G \ {e})|

For example, in the previous lemma we had γ = 4 and α = 2.
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The new technique generalization

Let F be the set of invalid colorings of G inducing a valid coloring of G\{e}.

Just like before, straight from definition we have:

|c(G)| = γ|c(G \ {e})| − |F |.

And so the main issue will be to upper bound |F |, just like we did in the previous
lemma.



10

The new technique generalization

The author provides a sufficient condition for all of this to work the inductive
step:



10

The new technique generalization

The author provides a sufficient condition for all of this to work the inductive
step:

Suppose we find coefficients (ai)i≥1 such that

|F | ≤
∑
i≥1

ai
|c(G \ {e})|

αi−1



10

The new technique generalization

The author provides a sufficient condition for all of this to work the inductive
step:

Suppose we find coefficients (ai)i≥1 such that

|F | ≤
∑
i≥1

ai
|c(G \ {e})|

αi−1

and ∑
i≥1

ai
αi−1 ≤ (γ − α).



10

The new technique generalization

The author provides a sufficient condition for all of this to work the inductive
step:

Suppose we find coefficients (ai)i≥1 such that

|F | ≤
∑
i≥1

ai
|c(G \ {e})|

αi−1

and ∑
i≥1

ai
αi−1 ≤ (γ − α).

Then, indeed

|c(G)| ≥ α|c(G \ {e})|.
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The new technique generalization

The author provides a sufficient condition for all of this to work the inductive
step:

Suppose we find coefficients (ai)i≥1 such that

|F | ≤
∑
i≥1

ai
|c(G \ {e})|

αi−1

And in practice, this boils down to expressing F as the union of colorings (Fi)i≥1
such that for all i there is an injection from Fi to the union of the colorings of
ai different subgraphs of G \ {e} of cardinality |G| − i.

And we want the coefficients (ai) to be small, in the previous lemma we had
ai = 1. If they are small enough, everything should be fine.
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Let’s try to prove something in general graphs as an example.

Theorem. For every graph G with maximum degree ∆ ≥ 1, we have

πch(G) ≤ ∆2 +
3

2
2
3

∆
5
3 + 2

2
3 ∆

4
3 .

Again - we prove something stronger, let

δ =
3

2
2
3

+ 2
2
3 ∆−

1
3 + ∆−

2
3

γ = ∆(∆− 1)(1 + δ + ∆−
1
3 ) + 1

α = ∆(∆ + 1)(1 + 2
1
3 ∆−

1
3 ).
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Example: πch(G) for bounded ∆(G)

Lemma. Let ∆ ≥ 2 and G be a graph of maximal degree at most ∆ and L
be a list assignment of G. Suppose each list is of size at least γ, then for any
vertex v of G we have

|CL(G)| ≥ α|CL(G \ {v})|

where CL(G) is the set of non-repetitive colorings of G respecting L.

It’s obvious that this is indeed a stronger statement, but let’s believe it for the
sake of not being too technical today.
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Example: πch(G) for bounded ∆(G)

Instead, let’s focus on the core idea in the induction step of the lemma proof.

Again, let F be the set of repetitive colorings of G respecting L which induce a
non-repetitive coloring on G \ {v}.

We write F =
⋃

i≥1Fi, where Fi is the set of colorings for F that contain a
path of length 2i inducing a square.
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2i such that
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• p contains v and we can call p′ the half of p that contains v,
• the coloring induced over G \ p′ is non-repetitive,
• p and the coloring induced over G \ p′ uniquely determines c.

From induction hypothesis we have

|CL(G \ p′)| ≤ |CL(G \ {v}|
αi−1 .

Let ai be the number of possible choices of p (the number of paths of length
2i going through v). Then

|Fi| ≤ ai ·
|CL(G \ {v})|

αi−1 .
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So if we find a good enough boud for ai, we are done.

And this is where we use the bound for maximal degree in G.

Fix k ∈ {0, 1, . . . , i − 1}. Let’s bound the number of paths of length 2i going
through v such that v splits the path into two parts of lengths k and 2i−k− 1.

v︸ ︷︷ ︸ ︸ ︷︷ ︸
k 2i− k − 1

If we want to construct such path, we can first find the part of length k and
then the second. Do it vertex after vertex. Note that in the first move we have
at most ∆ possibilities and for each next move at most ∆− 1.

∆∆− 1∆− 1 ∆− 1 ∆− 1 ∆− 1 ∆− 1 ∆− 1

After summing over all values of k, we get ai ≤ i∆(∆− 1)2i−2.

Turns out this is enough to complete the proof after some calculations.
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The weak Total Thue coloring of a graph is a coloring of both vertices and
edges, such that the sequence of colors on consequtive vertices and edges in
every path in G is non-repetitive.

A weak Total Thue coloring is called a strong Tutal Thue coloring if it is
additionally vertex-non-repetitive and edge-non-repetitive.

The minimum number of colors required for these colorings is denoted as πTw
(G)

and πT (G), respectively.

Again, there are also list versions denoted as πTwch(G) and πTch(G).
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new bound previously known best bound
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2
2
3

∆
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2
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4
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2
2
3

∆
5
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2
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4
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2
3 )

πTwch(G) ≤ 6∆

πTwch(G) ≤ d4.25∆e for ∆ ≥ 300

πTch(G) ≤ ∆2 + 3
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∆
5
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4
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4
3 ∆

5
3 +O(∆

4
3 )
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The end

Thank you!


